James Berleman

Overview

Professional Overview: 

My research interests have focused on understanding microbial community interactions from a bottom-up perspective with the overall goal of determining how cell-cell interactions drive community dynamics, including:

-Predatory behavior, and the impact of keystone species within microbial communities

-Understanding sub-cellular outer membrane vesicles: delivery, cargo, impact.   

-Cell-cell signaling and resistance to predatory and antibiotic threats

My research approach combines molecular genetics with novel multi-scale, multi-modal imaging techniques and biochemistry to examine microbial interactions, such as:

-Mass Spectrometry imaging (SIMS, nanoDESI)      

-3D Electron microscopy (FIB/SEM)

-stamp/extraction imaging of metabolites (NIMS)

Department: 
School of Science » Biology
SMC Email Address: 
Contact Information: 

Office
Brousseau Hall - 212

Contact:
Email: jeb8@stmarys-ca.edu

Education

  • Ph.D Microbiology, Indiana University, August 2004
  • B.S Microbiology, University of Illinois, May 1999

Courses Taught

-Genetics

-Microbiology

-Zymology (The Science of Delicious)

-Introduction to Molecular Biology and Biochemistry

-Introduction to Organismal and Evolutionary Biology

-Experiential Biology lab

-Collegiate Seminar

 

Presentations

Publications

1. Outer Membrane Vesicles of Bacteria: Structure, Biogenesis and Function

Nasabaradi, A, Berleman, JE, Auer, M.

Handbook of Hydrocarbon and Lipid Microbiology Series. Biogenesis of Fatty Acids, Lipids and Membranes (2017) Book chapter.

2. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior.

Berleman JE*, Zemla M, Remis JP, Liu H, Davis AE, Worth AN, West Z, Zhang A, Park H, Bosneaga E, van Leer B, Tsai W, Zusman DR, Auer M.

ISME J. 2016 May 6. PMID: 27152937
3. Preparation of Outer Membrane Vesicles from Myxococcus xanthus

Berleman JE, Zemla, M, Remis JP, and Auer, M.

Bio-Protocol 2016 Jan 20.
4. The predatory life cycle of Myxococcus xanthus.

Keane R, Berleman JE*.

Microbiology. 2016 Jan;162(1):1-11. Epub 2015 Oct 30. PMID: 26518442
5. Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus

Eckhert, E; Davis, A; Oster, G; Berleman, JE*

Biophys J. 2014 Dec 2. PMID: 25468349

6. The lethal cargo of Myxococcus xanthus outer membrane vesicles.

Berleman JE*, Allen S, Danielewicz MA, Remis JP, Gorur A, Cunha J, Hadi MZ, Zusman DR, Northen TR,

Witkowska HE, Auer M.

Front Microbiol. 2014 Jun 18. PMID: 25250022.

7. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

Remis JP, Wei D, Gorur A, Zemla M, Haraga J, Allen S, Witkowska HE, Costerton JW,

Berleman JE, Auer M.

Environ Microbiol. 2014 Feb16(2):598-610. PMID: 23848955.

8. ”Replica-extraction-transfer" nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria.

Louie KB, Bowen BP, Cheng X, Berleman JE, Chakraborty R, Deutschbauer A, Arkin A, Northen TR.

Anal Chem. 2013 Nov 19. PMID: 24111681.

9. The role of bacterial outer membrane vesicles for intra- and interspecies delivery.

Berleman JE, Auer M.

Environ Microbiol. 2013 Feb;15(2):347-54. PMID: 23227894.

10. Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus.

Kaimer C, Berleman JE, Zusman DR.

Curr Opin Microbiol. 2012 Dec;15(6): 751-7. PMID: 23142584.

11. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production     

Berleman, JE, Vicente, JJ, Davis, A, Jiang, S, Seo, Y & Zusman, DR.

PLoS ONE. 2011 Aug 19; 6(8):e23920. PMID: 21886839.

12. Cyclic GMP controls Rhodospirillum centenum cyst development  

Marden JN., Dong Q., Roychowdhury S., Berleman JE, & Bauer CE.

Mol Microbiol. 2011 Feb; 79(3): 600-15.  PMID: 21214648.

13. Deciphering the hunting strategy of a bacterial wolfpack

Berleman, JE, and Kirby, J.  

FEMS Microbiol Rev. 2009 Sep; 33(5): 942-57.  PMID: 19519767.

14. Predataxis behavior of Myxococcus xanthus

Berleman, JE, Scott, JC, Chumley, T & Kirby, J.

PNAS 2008 Nov 4; 105(44). 17127-17132. PMID: 18952843.

15. Regulation of aerobic photosystem synthesis in Rhodospirillum centenum by CrtJ and AerR

Masuda, S, Berleman, JE, Hasselbring, BM, and Bauer, CE.

Photochem Photobiol Sci. 2008 Oct; 7(10): 1267-72. PMID: 18846293.

16. Multicellular development is stimulated by predator-prey interactions in Myxococcus xanthus

Berleman, JE & Kirby, J.         

J Bacteriol. 2007 Aug; 189. 5675-82. PMID: 17513469

17. Chemosensory signal transduction systems in Myxococcus xanthus

Kirby, J, Berleman, JE, Muller, S, Scott, SC, Wilson, JM.

Myxobacteria: Multicellularity and Differentiation (2007) Book chapter.

18. Use of the phototactic ability of a bacterium to teach the genetic principles of random mutagenesis

Din, N., T. H. Bird and Berleman, JE.

The American Biology Teacher 2007 69(2): 32-36.

19. Rippling is a predatory behavior in Myxococcus xanthus

Berleman, JE, Cheung, P, Chumley, T & Kirby, J.

J Bacteriol. 2006 Aug; 188, 5888-95. PMID:16885457.

20. Involvement of a che-like cascade in regulating cyst cell development in Rhodospirillum centenum

Berleman, JE & Bauer, CE.

Mol Microbiol 2005 Jun; 56(6): 1457-1466. PMID: 15916598.

21. A che-like signal transduction cascade controlling flagella biosynthesis in Rhodospirillum centenum

Berleman, JE & Bauer, CE.

Mol Microbiol 2005 Mar; 55(5): 1390-1402. PMID: 15720548.

22. Hyper-cyst mutants in Rhodospirillum centenum identify regulatory loci in cyst cell differentiation

Berleman, JE, Hasselbring, BM & Bauer, CE.

J Bacteriol 2004 Sep; 186, 5834-5841. PMID: 15317789.

23. Characterization of cyst cell formation in the photosynthetic bacterium Rhodospirillum centenum

Berleman, JE & Bauer, CE.

Microbiology 2004 Feb; 150, 383-390. PMID: 14766916.

24. Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron.

Shipman JA, Berleman JE, Salyers AA.

J Bacteriol. 2000 Oct;182(19):5365-72. PMID: 10986238

Active Research Projects

Predator-prey interactions in bacteria

Honors, Awards & Grants

Honors: 

Jun-Aug 2014              Lawrence Berkeley National Lab - Visiting Faculty Program

Oct 2013                     Mentorship service for Sigma Xi Undergraduate Research Award

Jun-Aug 2013              Lawrence Berkeley National Lab - Visiting Faculty Program

April 2012                    Best Talk - 13Th Annual UC-Berkeley Microbiology Symposium

May 2010                   Moore Foundation Microbial Diversity Award

Jun 2009-Jul 2009       Marine Biological Laboratory, Woods Hole, MA - Microbial Diversity Scholarship

Awards: 

Interests

Scholarly Interests: 

Interests

  • Socio-microbiology
    My research interest is in understanding how cells interact with each other. Myxococcus xanthus cells are uniquely interactive bacteria, working together to form multicellular structures, yet also dangerous to other bacteria as they lyse cells of other species, such as E. coli, and grow on the released macromolecules. Current projects: 1) Mapping microbial interfaces. We use Nano Initiator Mass Spectrometry (NIMS) to construct chemical maps of bacterial interactions on surfaces. Bacteria represent a broad range of biological and chemical diversity. Our ability to understand and harness this diversity is critical for studies ranging from biofuel production to new pharmaceuticals (In collaboration with Trent Northen and Musahid Ahmed at Lawrence Berkeley National Lab). 2) Social cooperation in bacteria. We our analyzing the ability of M. xanthus cells to work together in Social motility. Motility on soft surfaces requires Type IV pili, similar to twitching motility in Pseudomonas aeruginosa, but also requires a high cell density. We are examining the extracellular components required through genetic and biochemical analysis of the transition from single cells to a cohesive multicellular unit (In collaboration with Manfred Auer at http://www.lbl.gov/Lawrence Berkeley National Lab). 3) Social antagonism in bacteria. M. xanthus cells lyse bacteria of other species through a mechanism that is distinct from other soil microbes such as Streptomyces species. The mechanism remains largely uncharacterized but requires cell contact and may depend on targeted delivery of antibiotic compounds.