Course: EES 75 Wetlands

1. Date of Application: 11/29/201
2. Name, Dept of Proposer: Carla Bossard, ES&S
3. Name of Dept/Program housing course: Environmental Science and Studies Program
4. Name of Chair/PD: Carla Bossard
5. How often is the course taught: biennially
6. Course Prerequisites: None
7. Unit value of course: 1
8. Normal Class Size: 20
9. Number of sections expected Fall 2012: 0
10. Number of sections expected Spring 2013: 1
11. Is the course appropriate for first-year students: Yes
12. Relevant Learning Goal(s): Scientific Understanding, Community Engagement
13. Chair will oversee submission of student work: Yes
14. Chair will oversee instructor participation in norming/assst: Yes
15. Teaching: "1. develop an awareness of the multiple aspects and values of wetlands;
 2. observe and understand the function of wetland habitats in California;
 3. learn how to measure wetland parameters and analyze wetland conservation problems from
 multiple perspectives;
 4. understand methods and appropriateness of restoration of degraded wetland habitats;
 5. learn to integrate principles from ecology, biogeography, population, genetics, economics, sociology, anthropology and how they apply to wetlands;
 6. learn to assess and discern important points of articles
 7. gain experience in collaboration with colleagues to achieve a goal;
 Wetlands (EES75) will cover the seven Scientific Understanding learning outcomes through lecture, readings, discussion, and laboratory exercises.

 Learning Outcomes #1, 2, 5 will be met by covering topics on the EES 75 syllabus in
lecture sections. These include scientific principles and theories that apply to
Wetlands function, Content will be covered via lecture by the professor and via assigned
textbook readings. Discussion and video clips will also be incorporated.

 Learning Outcomes #3,4,7 will be met by EES 75 laboratory sections. Each student attends
39 hours of EES 75 laboratory activities during the semester, In some laboratory meetings
students discern empirically the best methods for restoration of wetland and learn to
measure and assess the conditions of wetlands. In these lab sections, students will
actively engage with the process of science by collecting, analyzing, and interpreting
data related to wetlands. Students will cooperate in collecting, analyzing and doing
presentations on them.

 Learning Outcome #6 by student-centered discussion of scientific articles on wetlands
that the class has read. Articles will be selected from scientific journals and current
news stories.
"

16. Learning: "Learning outcomes 1,2,5 will be assessed in three examinations.
Learning outcomes 3,4,7 will be assessed by experiment reports, and
lab group presentations.
The students will write a 1-2 page synthesis of 3 of the 5 articles read and discussed."