ON THE SPHERE AND CYLINDER.

BOOK I.

"ARCHIMEDES to Dositheus greeting.

On a former occasion I sent you the investigations which I had up to that time completed, including the proofs, showing that any segment bounded by a straight line and a section of a right-angled cone [a parabola] is four-thirds of the triangle which has the same base with the segment and equal height. Since then certain theorems not hitherto demonstrated (ἀνελέγκτων) have occurred to me, and I have worked out the proofs of them. They are these: first, that the surface of any sphere is four times its greatest circle (τοῦ μεγίστου κύκλου); next, that the surface of any segment of a sphere is equal to a circle whose radius (ἡ ἐκ τοῦ κέντρου) is equal to the straight line drawn from the vertex (κορυφῆ) of the segment to the circumference of the circle which is the base of the segment; and, further, that any cylinder having its base equal to the greatest circle of those in the sphere, and height equal to the diameter of the sphere, is itself [i.e. in content] half as large again as the sphere, and its surface also [including its bases] is half as large again as the surface of the sphere. Now these properties were all along naturally inherent in the figures referred to (αὐτῇ τῇ φύσει προστίθηκεν περὶ τὰ εἰρημένα σχήματα), but remained unknown to those who were before my time engaged in the study of geometry. Having, however, now discovered that the properties are true of these figures, I cannot feel any hesitation

H. A.
in setting them side by side both with my former investigations and with those of the theorems of Eudoxus on solids which are held to be most irrefragably established, namely, that any pyramid is one third part of the prism which has the same base with the pyramid and equal height, and that any cone is one third part of the cylinder which has the same base with the cone and equal height. For, though these properties also were naturally inherent in the figures all along, yet they were in fact unknown to all the many able geometers who lived before Eudoxus, and had not been observed by any one. Now, however, it will be open to those who possess the requisite ability to examine these discoveries of mine. They ought to have been published while Conon was still alive, for I should conceive that he would best have been able to grasp them and to pronounce upon them the appropriate verdict; but, as I judge it well to communicate them to those who are conversant with mathematics, I send them to you with the proofs written out, which it will be open to mathematicians to examine. Farewell.

I first set out the axioms* and the assumptions which I have used for the proofs of my propositions.

DEFINITIONS.

1. There are in a plane certain terminated bent lines (καμπύλαι γραμμαί πεπερασμέναι)†, which either lie wholly on the same side of the straight lines joining their extremities, or have no part of them on the other side.

2. I apply the term concave in the same direction to a line such that, if any two points on it are taken, either all the straight lines connecting the points fall on the same side of the line, or some fall on one and the same side while others fall on the line itself, but none on the other side.

* Though the word used is δεξιόμετα, the "axioms" are more of the nature of definitions; and in fact Eutocius in his notes speaks of them as such (δεξιόμετα).

† Under the term bent line Archimedes includes not only curved lines of continuous curvature, but lines made up of any number of lines which may be either straight or curved.
3. Similarly also there are certain terminated surfaces, not themselves being in a plane but having their extremities in a plane, and such that they will either be wholly on the same side of the plane containing their extremities, or have no part of them on the other side.

4. I apply the term concave in the same direction to surfaces such that, if any two points on them are taken, the straight lines connecting the points either all fall on the same side of the surface, or some fall on one and the same side of it while some fall upon it, but none on the other side.

5. I use the term solid sector, when a cone cuts a sphere, and has its apex at the centre of the sphere, to denote the figure comprehended by the surface of the cone and the surface of the sphere included within the cone.

6. I apply the term solid rhombus, when two cones with the same base have their apices on opposite sides of the plane of the base in such a position that their axes lie in a straight line, to denote the solid figure made up of both the cones.

Assumptions.

1. Of all lines which have the same extremities the straight line is the least*.

* This well-known Archimedean assumption is scarcely, as it stands, a definition of a straight line, though Proclus says [p. 110 ed. Friedlein] "Archimedes defined (ὑποθέσω) the straight line as the least of those [lines] which have the same extremities. For because, as Euclid’s definition says, ἐξ ἱσον κείται τοῖς ἑφ’ ἐκτὸς σημεῖος, it is in consequence the least of those which have the same extremities." Proclus had just before [p. 109] explained Euclid’s definition, which, as will be seen, is different from the ordinary version given in our textbooks; a straight line is not “that which lies evenly between its extreme points,” but “that which ἐξ ἱσον τοῖς ἑφ’ ἐκτὸς σημεῖος κείται.” The words of Proclus are, “He [Euclid] shows by means of this that the straight line alone [of all lines] occupies a distance (εὐθεῖαν διάστημα) equal to that between the points on it. For, as far as one of its points is removed from another, so great is the length (μέγεθος) of the straight line of which the points are the extremities; and this is the meaning of τὸ ἐξ ἱσον κείσθαι τοῖς ἑφ’ ἐκτὸς σημεῖος. But, if you take two points on a circumference or any other line, the distance cut off between them along the line is greater than the interval separating them; and this is the case with every line except the straight line.” It appears then from this that Euclid’s definition should be understood in a sense very like that of
2. Of other lines in a plane and having the same extremities, [any two] such are unequal whenever both are concave in the same direction and one of them is either wholly included between the other and the straight line which has the same extremities with it, or is partly included by, and is partly common with, the other; and that [line] which is included is the lesser [of the two].

3. Similarly, of surfaces which have the same extremities, if those extremities are in a plane, the plane is the least [in area].

4. Of other surfaces with the same extremities, the extremities being in a plane, [any two] such are unequal whenever both are concave in the same direction and one surface is either wholly included between the other and the plane which has the same extremities with it, or is partly included by, and partly common with, the other; and that [surface] which is included is the lesser [of the two in area].

5. Further, of unequal lines, unequal surfaces, and unequal solids, the greater exceeds the less by such a magnitude as, when added to itself, can be made to exceed any assigned magnitude among those which are comparable with [it and with] one another*.

These things being premised, if a polygon be inscribed in a circle, it is plain that the perimeter of the inscribed polygon is less than the circumference of the circle; for each of the sides of the polygon is less than that part of the circumference of the circle which is cut off by it.”

Archimedes’ assumption, and we might perhaps translate as follows, “A straight line is that which extends equally (ἐκ ἐκατέρων) with the points on it,” or, to follow Proclus’ interpretation more closely, “A straight line is that which represents equal extension with [the distances separating] the points on it.”

* With regard to this assumption compare the Introduction, chapter iii. § 2.
Proposition 1.

If a polygon be circumscribed about a circle, the perimeter of the circumscribed polygon is greater than the perimeter of the circle.

Let any two adjacent sides, meeting in A, touch the circle at P, Q respectively.

Then [Assumptions, 2]

\[PA + AQ > (\text{arc } PQ). \]

A similar inequality holds for each angle of the polygon; and, by addition, the required result follows.

Proposition 2.

Given two unequal magnitudes, it is possible to find two unequal straight lines such that the greater straight line has to the less a ratio less than the greater magnitude has to the less.

Let \(AB, D \) represent the two unequal magnitudes, \(AB \) being the greater.

Suppose \(BC \) measured along \(BA \) equal to \(D \), and let \(GH \) be any straight line.

Then, if \(CA \) be added to itself a sufficient number of times, the sum will exceed \(D \). Let \(AF \) be this sum, and take \(E \) on \(GH \) produced such that \(GH \) is the same multiple of \(HE \) that \(AF \) is of \(AC \).

Thus \[EH : HG = AC : AF. \]

But, since \(AF > D \) (or \(CB \)),

\[AC : AF < AC : CB. \]

Therefore, componendo,

\[EG : GH < AB : D. \]

Hence \(EG, GH \) are two lines satisfying the given condition.
Proposition 3.

Given two unequal magnitudes and a circle, it is possible to inscribe a polygon in the circle and to describe another about it so that the side of the circumscribed polygon may have to the side of the inscribed polygon a ratio less than that of the greater magnitude to the less.

Let \(A, B \) represent the given magnitudes, \(A \) being the greater.

Find [Prop. 2] two straight lines \(F, KL \), of which \(F \) is the greater, such that

\[
F : KL < A : B \quad \text{...............(1).}
\]

Draw \(LM \) perpendicular to \(LK \) and of such length that \(KM = F \).

In the given circle let \(CE, DG \) be two diameters at right angles. Then, bisecting the angle \(DOC \), bisecting the half again, and so on, we shall arrive ultimately at an angle (as \(NOC \)) less than twice the angle \(LKM \).

Join \(NC \), which (by the construction) will be the side of a regular polygon inscribed in the circle. Let \(OP \) be the radius of the circle bisecting the angle \(NOC \) (and therefore bisecting \(NC \) at right angles, in \(H \), say), and let the tangent at \(P \) meet \(OC, ON \) produced in \(S, T \) respectively.

Now, since \(\angle CON < 2 \angle LKM \),

\[
\angle HOC < \angle LKM,
\]
and the angles at H, L are right;
therefore $MK : LK > OC : OH$
$> OP : OH$.
Hence $ST : CN < MK : LK$
$< F : LK$;
therefore, a fortiori, by (1),
$ST : CN < A : B$.
Thus two polygons are found satisfying the given condition.

Proposition 4.

Again, given two unequal magnitudes and a sector, it is possible to describe a polygon about the sector and to inscribe another in it so that the side of the circumscribed polygon may have to the side of the inscribed polygon a ratio less than the greater magnitude has to the less.

[The “inscribed polygon” found in this proposition is one which has for two sides the two radii bounding the sector, while the remaining sides (the number of which is, by construction, some power of 2) subtend equal parts of the arc of the sector; the “circumscribed polygon” is formed by the tangents parallel to the sides of the inscribed polygon and by the two bounding radii produced.]

In this case we make the same construction as in the last proposition except that we bisect the angle COD of the sector, instead of the right angle between two diameters, then bisect the half again, and so on. The proof is exactly similar to the preceding one.
Proposition 5.

"Given a circle and two unequal magnitudes, to describe a polygon about the circle and inscribe another in it, so that the circumscribed polygon may have to the inscribed a ratio less than the greater magnitude has to the less.

Let A be the given circle and B, C the given magnitudes, B being the greater.

\[\text{Diagram:} \]

Take two unequal straight lines D, E, of which D is the greater, such that $D : E < B : C$ [Prop. 2], and let F be a mean proportional between D, E, so that D is also greater than F.

Describe (in the manner of Prop. 3) one polygon about the circle, and inscribe another in it, so that the side of the former has to the side of the latter a ratio less than the ratio $D : F$.

Thus the duplicate ratio of the side of the former polygon to the side of the latter is less than the ratio $D^2 : F^2$.

But the said duplicate ratio of the sides is equal to the ratio of the areas of the polygons, since they are similar;

therefore the area of the circumscribed polygon has to the area of the inscribed polygon a ratio less than the ratio $D^2 : F^2$, or $D : E$, and a fortiori less than the ratio $B : C$.
Proposition 6.

"Similarly we can show that, given two unequal magnitudes and a sector, it is possible to circumscribe a polygon about the sector and inscribe in it another similar one so that the circumscribed may have to the inscribed a ratio less than the greater magnitude has to the less.

And it is likewise clear that, if a circle or a sector, as well as a certain area, be given, it is possible, by inscribing regular polygons in the circle or sector, and by continually inscribing such in the remaining segments, to leave segments of the circle or sector which are [together] less than the given area. For this is proved in the Elements [Eucl. xii. 2].

But it is yet to be proved that, given a circle or sector and an area, it is possible to describe a polygon about the circle or sector, such that the area remaining between the circumference and the circumscribed figure is less than the given area."

The proof for the circle (which, as Archimedes says, can be equally applied to a sector) is as follows.

Let A be the given circle and B the given area.

Now, there being two unequal magnitudes $A + B$ and A, let a polygon (C) be circumscribed about the circle and a polygon (I) inscribed in it [as in Prop. 5], so that

$$C : I < A + B : A \quad \text{..........................(1)}.$$

The circumscribed polygon (C) shall be that required.
For the circle (\(A\)) is greater than the inscribed polygon (\(I\)).

Therefore, from (1), \textit{a fortiori},
\[
C : A < A + B : A,
\]
whence
\[
C < A + B,
\]
or
\[
C - A < B.
\]

\textbf{Proposition 7.}

\textit{If in an isosceles cone [i.e. a right circular cone] a pyramid be inscribed having an equilateral base, the surface of the pyramid excluding the base is equal to a triangle having its base equal to the perimeter of the base of the pyramid and its height equal to the perpendicular drawn from the apex on one side of the base.}

Since the sides of the base of the pyramid are equal, it follows that the perpendiculars from the apex to all the sides of the base are equal; and the proof of the proposition is obvious.

\textbf{Proposition 8.}

\textit{If a pyramid be circumscribed about an isosceles cone, the surface of the pyramid excluding its base is equal to a triangle having its base equal to the perimeter of the base of the pyramid and its height equal to the side [i.e. a generator] of the cone.}

The base of the pyramid is a polygon circumscribed about the circular base of the cone, and the line joining the apex of the cone or pyramid to the point of contact of any side of the polygon is perpendicular to that side. Also all these perpendiculars, being generators of the cone, are equal; whence the proposition follows immediately.
Proposition 9.

If in the circular base of an isosceles cone a chord be placed, and from its extremities straight lines be drawn to the apex of the cone, the triangle so formed will be less than the portion of the surface of the cone intercepted between the lines drawn to the apex.

Let ABC be the circular base of the cone, and O its apex.

Draw a chord AB in the circle, and join OA, OB. Bisect the arc ACB in C, and join AC, BC, OC.

Then $\triangle OAC + \triangle OBC > \triangle OAB$.

Let the excess of the sum of the first two triangles over the third be equal to the area D.

Then D is either less than the sum of the segments AEC, CFB, or not less.

I. Let D be not less than the sum of the segments referred to.

We have now two surfaces

(1) that consisting of the portion $OAEC$ of the surface of the cone together with the segment AEC, and

(2) the triangle OAC;

and, since the two surfaces have the same extremities (the perimeter of the triangle OAC), the former surface is greater than the latter, which is included by it [Assumptions, 3 or 4].
Hence $(\text{surface } O\!A\!E\!C) + (\text{segment } A\!E\!C) > \triangle O\!A\!C$.

Similarly $(\text{surface } O\!C\!F\!B) + (\text{segment } C\!F\!B) > \triangle O\!B\!C$.

Therefore, since D is not less than the sum of the segments, we have, by addition,

$$(\text{surface } O\!A\!E\!C\!F\!B) + D > \triangle O\!A\!C + \triangle O\!B\!C$$

$$> \triangle O\!A\!B + D, \text{ by hypothesis.}$$

Taking away the common part D, we have the required result.

II. Let D be less than the sum of the segments $A\!E\!C, C\!F\!B$.

If now we bisect the arcs $A\!C, C\!B$, then bisect the halves, and so on, we shall ultimately leave segments which are together less than D. [Prop. 6]

Let $A\!G\!E, E\!H\!C, C\!K\!F, F\!L\!B$ be those segments, and join $O\!E, O\!F$.

Then, as before,

$$(\text{surface } O\!A\!G\!E) + (\text{segment } A\!G\!E) > \triangle O\!A\!E$$

and

$$(\text{surface } O\!E\!H\!C) + (\text{segment } E\!H\!C) > \triangle O\!E\!C.$$}

Therefore $(\text{surface } O\!A\!G\!H\!C) + (\text{segments } A\!G\!E, E\!H\!C)$

$$> \triangle O\!A\!E + \triangle O\!E\!C$$

$$> \triangle O\!A\!C, a \text{ fortiori.}$$

Similarly for the part of the surface of the cone bounded by $O\!C, O\!B$ and the arc $C\!F\!B$.

Hence, by addition,

$$(\text{surface } O\!A\!G\!E\!H\!C\!K\!F\!L\!B) + (\text{segments } A\!G\!E, E\!H\!C, C\!K\!F, F\!L\!B)$$

$$> \triangle O\!A\!C + \triangle O\!B\!C$$

$$> \triangle O\!A\!B + D, \text{ by hypothesis.}$$

But the sum of the segments is less than D, and the required result follows.
Proposition 10.

If in the plane of the circular base of an isosceles cone two tangents be drawn to the circle meeting in a point, and the points of contact and the point of concourse of the tangents be respectively joined to the apex of the cone, the sum of the two triangles formed by the joining lines and the two tangents are together greater than the included portion of the surface of the cone.

Let ABC be the circular base of the cone, O its apex, AD, BD the two tangents to the circle meeting in D. Join OA, OB, OD.

Let ECF be drawn touching the circle at C, the middle point of the arc ACB, and therefore parallel to AB. Join OE, OF.

Then $ED + DF > EF$,

and, adding $AE + FB$ to each side,

$$AD + DB > AE + EF + FB.$$

Now OA, OC, OB, being generators of the cone, are equal, and they are respectively perpendicular to the tangents at A, C, B.

[Diagram of a cone with tangents and points of contact marked.]
It follows that
\[\Delta OAD + \Delta ODB > \Delta OAE + \Delta OEF + \Delta OFB. \]

Let the area \(G \) be equal to the excess of the first sum over the second.

\(G \) is then either less, or not less, than the sum of the spaces \(EAHC, FCKB \) remaining between the circle and the tangents, which sum we will call \(L \).

I. Let \(G \) be not less than \(L \).

We have now two surfaces

(1) that of the pyramid with apex \(O \) and base \(AEFB \), excluding the face \(OAB \),

(2) that consisting of the part \(OACB \) of the surface of the cone together with the segment \(ACB \).

These two surfaces have the same extremities, viz. the perimeter of the triangle \(OAB \), and, since the former includes the latter, the former is the greater [Assumptions, 4].

That is, the surface of the pyramid exclusive of the face \(OAB \) is greater than the sum of the surface \(OACB \) and the segment \(ACB \).

Taking away the segment from each sum, we have
\[\Delta OAE + \Delta OEF + \Delta OFB + L > \text{the surface } OAHCKB. \]

And \(G \) is not less than \(L \).

It follows that
\[\Delta OAE + \Delta OEF + \Delta OFB + G, \]
which is by hypothesis equal to \(\Delta OAD + \Delta ODB \), is greater than the same surface.

II. Let \(G \) be less than \(L \).

If we bisect the arcs \(AC, CB \) and draw tangents at their middle points, then bisect the halves and draw tangents, and so on, we shall lastly arrive at a polygon such that the sum of the parts remaining between the sides of the polygon and the circumference of the segment is less than \(G \).
ON THE SPHERE AND CYLINDER I.

Let the remainders be those between the segment and the polygon $APQRSB$, and let their sum be M. Join OP, OQ, etc.

Then, as before,
\[\triangle OAE + \triangle OEF + \triangle OFB > \triangle OAP + \triangle OPQ + \ldots + \triangle OSB. \]

Also, as before,
\[(\text{surface of pyramid } OAPQRSB \text{ excluding the face } OAB) > \text{the part } OACB \text{ of the surface of the cone together with the segment } ACB.\]

Taking away the segment from each sum,
\[\triangle OAP + \triangle OPQ + \ldots + M > \text{the part } OACB \text{ of the surface of the cone.} \]

Hence, a fortiori,
\[\triangle OAE + \triangle OEF + \triangle OFB + G, \]

which is by hypothesis equal to
\[\triangle OAD + \triangle ODB, \]

is greater than the part $OACB$ of the surface of the cone.

Proposition 11.

If a plane parallel to the axis of a right cylinder cut the cylinder, the part of the surface of the cylinder cut off by the plane is greater than the area of the parallelogram in which the plane cuts it.

Proposition 12.

If at the extremities of two generators of any right cylinder tangents be drawn to the circular bases in the planes of those bases respectively, and if the pairs of tangents meet, the parallelograms formed by each generator and the two corresponding tangents respectively are together greater than the included portion of the surface of the cylinder between the two generators.

[The proofs of these two propositions follow exactly the methods of Props. 9, 10 respectively, and it is therefore unnecessary to reproduce them.]
"From the properties thus proved it is clear (1) that, if a pyramid be inscribed in an isosceles cone, the surface of the pyramid excluding the base is less than the surface of the cone [excluding the base], and (2) that, if a pyramid be circumscribed about an isosceles cone, the surface of the pyramid excluding the base is greater than the surface of the cone excluding the base.

"It is also clear from what has been proved both (1) that, if a prism be inscribed in a right cylinder, the surface of the prism made up of its parallelograms [i.e. excluding its bases] is less than the surface of the cylinder excluding its bases, and (2) that, if a prism be circumscribed about a right cylinder, the surface of the prism made up of its parallelograms is greater than the surface of the cylinder excluding its bases."

Proposition 13.

The surface of any right cylinder excluding the bases is equal to a circle whose radius is a mean proportional between the side [i.e. a generator] of the cylinder and the diameter of its base.

Let the base of the cylinder be the circle A, and make CD equal to the diameter of this circle, and EF equal to the height of the cylinder.
Let H be a mean proportional between CD, EF, and B a circle with radius equal to H.

Then the circle B shall be equal to the surface of the cylinder (excluding the bases), which we will call S.

For, if not, B must be either greater or less than S.

I. Suppose $B < S$.

Then it is possible to circumscribe a regular polygon about B, and to inscribe another in it, such that the ratio of the former to the latter is less than the ratio $S : B$.

Suppose this done, and circumscribe about A a polygon similar to that described about B; then erect on the polygon about A a prism of the same height as the cylinder. The prism will therefore be circumscribed to the cylinder.

Let KD, perpendicular to CD, and FL, perpendicular to EF, be each equal to the perimeter of the polygon about A. Bisect CD in M, and join MK.

Then $\triangle KDM = \text{the polygon about } A$.

Also $\square EL = \text{surface of prism (excluding bases)}$.

Produce FE to N so that $FE = EN$, and join NL.

Now the polygons about A, B, being similar, are in the duplicate ratio of the radii of A, B.

Thus
\[
\triangle KDM : (\text{polygon about } B) = MD^2 : H^2 = MD : CD \cdot EF = MD : NF = \triangle KDM : \triangle LFN
\]

(since $DK = FL$).

Therefore (polygon about $B) = \triangle LFN = \square EL = (\text{surface of prism about } A)$, from above.

But $(\text{polygon about } B) : (\text{polygon in } B) < S : B$.

H. A.
Therefore
(surface of prism about A) : (polygon in B) $< S : B$,
and, alternately,
(surface of prism about A) : $S <$ (polygon in B) : B;
which is impossible, since the surface of the prism is greater
than S, while the polygon inscribed in B is less than B.

Therefore $B < S$.

II. Suppose $B > S$.

Let a regular polygon be circumscribed about B and another
inscribed in it so that

$$(\text{polygon about } B):(\text{polygon in } B)<B:S.$$

Inscribe in A a polygon similar to that inscribed in B, and
erect a prism on the polygon inscribed in A of the same height
as the cylinder.

Again, let DK, FL, drawn as before, be each equal to the
perimeter of the polygon inscribed in A.

Then, in this case,

$$\triangle KDM > (\text{polygon inscribed in } A)$$

(since the perpendicular from the centre on a side of the
polygon is less than the radius of A).

Also $\triangle LFN = \square EL =$ surface of prism (excluding bases).

Now

$$(\text{polygon in } A):(\text{polygon in } B)=MD^2:H^2,$$

$$\quad=\triangle KDM: \triangle LFN,$$

as before.

And

$$\triangle KDM > (\text{polygon in } A).$$

Therefore

$\triangle LFN$, or (surface of prism) $> (\text{polygon in } B)$.

But this is impossible, because

$$(\text{polygon about } B):(\text{polygon in } B)<B:S,$$

$$< (\text{polygon about } B):S,$$

so that

$$(\text{polygon in } B)>S,$$

$$>(\text{surface of prism}), a \text{ fortiori}.$$

Hence B is neither greater nor less than S, and therefore

$B=S$.
Proposition 14.

The surface of any isosceles cone excluding the base is equal to a circle whose radius is a mean proportional between the side of the cone [a generator] and the radius of the circle which is the base of the cone.

Let the circle A be the base of the cone; draw C equal to the radius of the circle, and D equal to the side of the cone, and let E be a mean proportional between C, D.

![Diagram of a cone with circles and a line segment]

Draw a circle B with radius equal to E.

Then shall B be equal to the surface of the cone (excluding the base), which we will call S.

If not, B must be either greater or less than S.

I. Suppose $B < S$.

Let a regular polygon be described about B and a similar one inscribed in it such that the former has to the latter a ratio less than the ratio $S : B$.

Describe about A another similar polygon, and on it set up a pyramid with apex the same as that of the cone.

Then (polygon about A) : (polygon about B)

$= C^* : E^*

= C : D

= (polygon about A) : (surface of pyramid excluding base).
Therefore

(surface of pyramid) = (polygon about B).

Now (polygon about B) : (polygon in B) < S : B.
Therefore

(surface of pyramid) : (polygon in B) < S : B,
which is impossible, (because the surface of the pyramid is
greater than S, while the polygon in B is less than B).

Hence

B ≠ S.

II. Suppose B > S.

Take regular polygons circumscribed and inscribed to B such
that the ratio of the former to the latter is less than the ratio
B : S.

Inscribe in A a similar polygon to that inscribed in B, and
erect a pyramid on the polygon inscribed in A with apex the
same as that of the cone.

In this case

(polygon in A) : (polygon in B) = C^n : E^n

= C : D

> (polygon in A) : (surface of pyramid excluding base).

This is clear because the ratio of C to D is greater than the
ratio of the perpendicular from the centre of A on a side of the
polygon to the perpendicular from the apex of the cone on the
same side*.

Therefore

(surface of pyramid) > (polygon in B).

But (polygon about B) : (polygon in B) < B : S.
Therefore, a fortiori,

(polygon about B) : (surface of pyramid) < B : S;
which is impossible.

Since therefore B is neither greater nor less than S,

B = S.

* This is of course the geometrical equivalent of saying that, if a, β be two
angles each less than a right angle, and a > β, then sin a > sin β.
Proposition 15.

The surface of any isosceles cone has the same ratio to its base as the side of the cone has to the radius of the base.

By Prop. 14, the surface of the cone is equal to a circle whose radius is a mean proportional between the side of the cone and the radius of the base.

Hence, since circles are to one another as the squares of their radii, the proposition follows.

Proposition 16.

If an isosceles cone be cut by a plane parallel to the base, the portion of the surface of the cone between the parallel planes is equal to a circle whose radius is a mean proportional between (1) the portion of the side of the cone intercepted by the parallel planes and (2) the line which is equal to the sum of the radii of the circles in the parallel planes.

Let OAB be a triangle through the axis of a cone, DE its intersection with the plane cutting off the frustum, and OFC the axis of the cone.

Then the surface of the cone OAB is equal to a circle whose radius is equal to $\sqrt{OA \cdot AC}$. \[\text{[Prop. 14.]}\]

Similarly the surface of the cone ODE is equal to a circle whose radius is equal to $\sqrt{OD \cdot DF}$.

And the surface of the frustum is equal to the difference between the two circles.

Now

$$OA \cdot AC - OD \cdot DF = DA \cdot AC + OD \cdot AC - OD \cdot DF.$$

But

$$OD \cdot AC = OA \cdot DF,$$

since

$$OA : AC = OD : DF.$$
Hence $OA \cdot AC - OD \cdot DF = DA \cdot AC + DA \cdot DF$
\[= DA \cdot (AC + DF).\]

And, since circles are to one another as the squares of their radii, it follows that the difference between the circles whose radii are $\sqrt{OA \cdot AC}$, $\sqrt{OD \cdot DF}$ respectively is equal to a circle whose radius is $\sqrt{DA \cdot (AC + DF)}$.

Therefore the surface of the frustum is equal to this circle.

Lemmas.

"1. Cones having equal height have the same ratio as their bases; and those having equal bases have the same ratio as their heights*.

2. If a cylinder be cut by a plane parallel to the base, then, as the cylinder is to the cylinder, so is the axis to the axis †.

3. The cones which have the same bases as the cylinders [and equal height] are in the same ratio as the cylinders.

4. Also the bases of equal cones are reciprocally proportional to their heights; and those cones whose bases are reciprocally proportional to their heights are equal ‡.

5. Also the cones, the diameters of whose bases have the same ratio as their axes, are to one another in the triplicate ratio of the diameters of the bases.§

And all these propositions have been proved by earlier geometers."

* Euclid xii. 11. "Cones and cylinders of equal height are to one another as their bases."
Euclid xii. 14. "Cones and cylinders on equal bases are to one another as their heights."

† Euclid xii. 13. "If a cylinder be cut by a plane parallel to the opposite planes [the bases], then, as the cylinder is to the cylinder, so will the axis be to the axis."

‡ Euclid xii. 15. "The bases of equal cones and cylinders are reciprocally proportional to their heights; and those cones and cylinders whose bases are reciprocally proportional to their heights are equal."
§ Euclid xii. 12. "Similar cones and cylinders are to one another in the triplicate ratio of the diameters of their bases."
Proposition 17.

If there be two isosceles cones, and the surface of one cone be equal to the base of the other, while the perpendicular from the centre of the base [of the first cone] on the side of that cone is equal to the height [of the second], the cones will be equal.

Let OAB, DEF be triangles through the axes of two cones respectively, C, G the centres of the respective bases, GH the perpendicular from G on FD; and suppose that the base of the cone OAB is equal to the surface of the cone DEF, and that $OC = GH$.

Then, since the base of OAB is equal to the surface of DEF,

$$(\text{base of cone } OAB) : (\text{base of cone } DEF)\
= (\text{surface of } DEF) : (\text{base of } DEF)\
= DF : FG \quad \text{[Prop. 15]}\
= DG : GH, \text{ by similar triangles},\
= DG : OC.$$

Therefore the bases of the cones are reciprocally proportional to their heights; whence the cones are equal. \text{[Lemma 4.]}
Proposition 18.

Any solid rhombus consisting of isosceles cones is equal to the cone which has its base equal to the surface of one of the cones composing the rhombus and its height equal to the perpendicular drawn from the apex of the second cone to one side of the first cone.

Let the rhombus be $OABD$ consisting of two cones with apices O, D and with a common base (the circle about AB as diameter).

Let FKH be another cone with base equal to the surface of the cone OAB and height FG equal to DE, the perpendicular from D on OB.

Then shall the cone FKH be equal to the rhombus.

Construct a third cone LMN with base (the circle about MN) equal to the base of OAB and height LP equal to OD.

Then, since $LP = OD$,

$$LP : CD = OD : CD.$$

But [Lemma 1] $OD : CD = (\text{rhombus } OADB) : (\text{cone } DAB)$, and $LP : CD = (\text{cone } LMN) : (\text{cone } DAB)$.

It follows that

$$(\text{rhombus } OADB) = (\text{cone } LMN) \ldots \ldots \ldots \ldots \ldots \ldots \ldots (1).$$
Again, since $AB = MN$, and
(type of OAB) = (base of FK),
(type of FK) : (base of LMN)
= (type of OAB) : (base of OAB)
= $OB : BC$ [Prop. 15]
= $OD : DE$, by similar triangles,
= $LP : FG$, by hypothesis.

Thus, in the cones FK, LMN, the bases are reciprocally
proportional to the heights.

Therefore the cones FK, LMN are equal,
and hence, by (1), the cone FK is equal to the given
solid rhombus.

Proposition 19.

If an isosceles cone be cut by a plane parallel to the base,
and on the resulting circular section a cone be described having
as its apex the centre of the base [of the first cone], and if the
rhombus so formed be taken away from the whole cone, the part
remaining will be equal to the cone with base equal to the surface
of the portion of the first cone between the parallel planes and
with height equal to the perpendicular drawn from the centre of
the base of the first cone on one side of that cone.

Let the cone OAB be cut by a plane parallel to the base in
the circle on DE as diameter. Let C be the centre of the base
of the cone, and with C as apex and the circle about DE as base
describe a cone, making with the cone ODE the rhombus
$ODCE$.

Take a cone FGH with base equal to the surface of the
frustum $DABE$ and height equal to the perpendicular (CK)
from C on AO.

Then shall the cone FGH be equal to the difference between
the cone OAB and the rhombus $ODCE$.

Take (1) a cone LMN with base equal to the surface of the
cone OAB, and height equal to CK,
(2) a cone PQR with base equal to the surface of the cone ODE and height equal to CK.

Now, since the surface of the cone OAB is equal to the surface of the cone ODE together with that of the frustum $DABE$, we have, by the construction,

\[(\text{base of } LMN) = (\text{base of } FGH) + (\text{base of } PQR)\]

and, since the heights of the three cones are equal,

\[(\text{cone } LMN) = (\text{cone } FGH) + (\text{cone } PQR).\]

But the cone LMN is equal to the cone OAB [Prop. 17], and the cone PQR is equal to the rhombus $ODCE$ [Prop. 18].

Therefore $(\text{cone } OAB) = (\text{cone } FGH) + (\text{rhombus } ODCE)$, and the proposition is proved.

Proposition 20.

If one of the two isosceles cones forming a rhombus be cut by a plane parallel to the base and on the resulting circular section a cone be described having the same apex as the second cone, and if the resulting rhombus be taken from the whole rhombus, the remainder will be equal to the cone with base equal to the surface of the portion of the cone between the parallel planes and with height equal to the perpendicular drawn from the apex of the second cone to the side of the first cone.

* There is a slight error in Heiberg's translation "prioris coni" and in the corresponding note, p. 93. The perpendicular is not drawn from the apex of the cone which is cut by the plane but from the apex of the other.
Let the rhombus be $OACB$, and let the cone OAB be cut by a plane parallel to its base in the circle about DE as diameter. With this circle as base and C as apex describe a cone, which therefore with ODE forms the rhombus $ODCE$.

![Diagram](image)

Take a cone FGH with base equal to the surface of the frustum $DABE$ and height equal to the perpendicular (CK) from C on OA.

The cone FGH shall be equal to the difference between the rhombi $OACB$, $ODCE$.

For take (1) a cone LMN with base equal to the surface of OAB and height equal to CK,

(2) a cone PQR, with base equal to the surface of ODE, and height equal to CK.

Then, since the surface of OAB is equal to the surface of ODE together with that of the frustum $DABE$, we have, by construction,

$$(\text{base of } LMN) = (\text{base of } PQR) + (\text{base of } FGH),$$

and the three cones are of equal height; therefore

$$(\text{cone } LMN) = (\text{cone } PQR) + (\text{cone } FGH).$$

But the cone LMN is equal to the rhombus $OACB$, and the cone PQR is equal to the rhombus $ODCE$ [Prop. 18].

Hence the cone FGH is equal to the difference between the two rhombi $OACB$, $ODCE$.
Proposition 21.

A regular polygon of an even number of sides being inscribed in a circle, as $ABC \ldots A' \ldots C'B'A$, so that AA' is a diameter, if two angular points next but one to each other, as B, B', be joined, and the other lines parallel to BB' and joining pairs of angular points be drawn, as CC', DD', \ldots, then

$$(BB' + CC' + \ldots) : AA' = A'B : BA.$$

Let BB', CC', DD', \ldots meet AA' in F, G, H, \ldots; and let CB', DC', \ldots be joined meeting AA' in K, L, \ldots respectively.

Then clearly CB', DC', \ldots are parallel to one another and to AB.

Hence, by similar triangles,

$$BF : FA = B'F : FK$$

$$= CG : GK$$

$$= C'G : GL$$

$$\ldots \ldots \ldots$$

$$= E'I : IA'.$$
and, summing the antecedents and consequents respectively, we have

\[(BB' + CC' + \ldots) : AA' = BF : FA = A'B : BA.\]

Proposition 22.

If a polygon be inscribed in a segment of a circle \(LAL'\) so that all its sides excluding the base are equal and their number even, as \(LK\ldots A\ldots K'L', A\) being the middle point of the segment, and if the lines \(BB', CC', \ldots\) parallel to the base \(LL'\) and joining pairs of angular points be drawn, then

\[(BB' + CC' + \ldots + LM) : AM = A'B : BA,\]

where \(M\) is the middle point of \(LL'\) and \(AA'\) is the diameter through \(M.\)

Joining \(CB', DC', \ldots\) \(LK',\) as in the last proposition, and supposing that they meet \(AM\) in \(P, Q, \ldots R,\) while \(BB', CC', \ldots, KK'\) meet \(AM\) in \(F, G, \ldots H,\) we have, by similar triangles,

\[BF : FA = B'F : FP = CG : PG = C'G : GQ \cdots \cdots \cdots = LM : RM;\]
and, summing the antecedents and consequents, we obtain

\[(BB' + CC' + \ldots + LM) : AM = BF : FA = A'B : BA.\]

Proposition 23.

Take a great circle \(ABC\ldots\) of a sphere, and inscribe in it a regular polygon whose sides are a multiple of four in number. Let \(AA', MM'\) be diameters at right angles and joining opposite angular points of the polygon.

![Diagram of a great circle and inscribed polygon]

Then, if the polygon and great circle revolve together about the diameter \(AA'\), the angular points of the polygon, except \(A, A'\), will describe circles on the surface of the sphere at right angles to the diameter \(AA'\). Also the sides of the polygon will describe portions of conical surfaces, e.g. \(BC\) will describe a surface forming part of a cone whose base is a circle about \(CC'\) as diameter and whose apex is the point in which \(CB, C'B'\) produced meet each other and the diameter \(AA'\).

Comparing the hemisphere \(MAM'\) and that half of the figure described by the revolution of the polygon which is included in the hemisphere, we see that the surface of the hemisphere and the surface of the inscribed figure have the same boundaries in one plane (viz. the circle on \(MM'\) as
diameter), the former surface entirely includes the latter, and they are both concave in the same direction.

Therefore [Assumptions, 4] the surface of the hemisphere is greater than that of the inscribed figure; and the same is true of the other halves of the figures.

Hence the surface of the sphere is greater than the surface described by the revolution of the polygon inscribed in the great circle about the diameter of the great circle.

Proposition 24.

If a regular polygon $AB \ldots A' \ldots B' A$, the number of whose sides is a multiple of four, be inscribed in a great circle of a sphere, and if BB' subtending two sides be joined, and all the other lines parallel to BB' and joining pairs of angular points be drawn, then the surface of the figure inscribed in the sphere by the revolution of the polygon about the diameter AA' is equal to a circle the square of whose radius is equal to the rectangle $BA (BB' + CC' + \ldots)$.

The surface of the figure is made up of the surfaces of parts of different cones.

Now the surface of the cone ABB' is equal to a circle whose radius is $\sqrt{BA} \cdot \frac{1}{2} BB'$.

[Prop. 14]
ARCHIMEDES

The surface of the frustum $BB'C'C$ is equal to a circle of radius $\sqrt{BC \cdot \frac{1}{2}(BB' + CC')}$, [Prop. 16] and so on.

It follows, since $BA = BC = \ldots$, that the whole surface is equal to a circle whose radius is equal to $\sqrt{BA (BB' + CC' + \ldots + MM' + \ldots + YY')}$.

Proposition 25.

The surface of the figure inscribed in a sphere as in the last propositions, consisting of portions of conical surfaces, is less than four times the greatest circle in the sphere.

Let $AB \ldots A' \ldots B'A$ be a regular polygon inscribed in a great circle, the number of its sides being a multiple of four.

As before, let BB' be drawn subtending two sides, and $CC', \ldots YY'$ parallel to BB'.

Let R be a circle such that the square of its radius is equal to $AB (BB' + CC' + \ldots + YY')$, so that the surface of the figure inscribed in the sphere is equal to R. [Prop. 24]
ON THE SPHERE AND CYLINDER I.

Now

\[(BB' + CC' + ... + YY') : AA' = AB : AB, \quad \text{[Prop. 21]}\]

whence \[AB(BB' + CC' + ... + YY') = AA' \cdot A'B.\]

Hence \[(\text{radius of } R)^2 = AA' \cdot A'B < AA'^2.\]

Therefore the surface of the inscribed figure, or the circle \(R\), is less than four times the circle \(AMA'M'\).

Proposition 26.

The figure inscribed as above in a sphere is equal [in volume] to a cone whose base is a circle equal to the surface of the figure inscribed in the sphere and whose height is equal to the perpendicular drawn from the centre of the sphere to one side of the polygon.

Suppose, as before, that \(AB...A'...B'A\) is the regular polygon inscribed in a great circle, and let \(BB', CC', ...\) be joined.

With apex \(O\) construct cones whose bases are the circles on \(BB', CC', ...\) as diameters in planes perpendicular to \(AA'\).
Then $OBAB'$ is a solid rhombus, and its volume is equal to a cone whose base is equal to the surface of the cone ABB' and whose height is equal to the perpendicular from O on AB [Prop. 18]. Let the length of the perpendicular be p.

Again, if $CB, C'B'$ produced meet in T, the portion of the solid figure which is described by the revolution of the triangle BOC about AA' is equal to the difference between the rhombi $OCTC'$ and $OBTB'$, i.e. to a cone whose base is equal to the surface of the frustum $BB'C'C$ and whose height is p [Prop. 20].

Proceeding in this manner, and adding, we prove that, since cones of equal height are to one another as their bases, the volume of the solid of revolution is equal to a cone with height p and base equal to the sum of the surfaces of the cone BAB', the frustum $BB'C'C$, etc., i.e. a cone with height p and base equal to the surface of the solid.

Proposition 27.

The figure inscribed in the sphere as before is less than four times the cone whose base is equal to a great circle of the sphere and whose height is equal to the radius of the sphere.

By Prop. 26 the volume of the solid figure is equal to a cone whose base is equal to the surface of the solid and whose height is p, the perpendicular from O on any side of the polygon. Let R be such a cone.

Take also a cone S with base equal to the great circle, and height equal to the radius, of the sphere.

Now, since the surface of the inscribed solid is less than four times the great circle [Prop. 25], the base of the cone R is less than four times the base of the cone S.

Also the height (p) of R is less than the height of S.

Therefore the volume of R is less than four times that of S; and the proposition is proved.
Proposition 28.

Let a regular polygon, whose sides are a multiple of four in number, be circumscribed about a great circle of a given sphere, as $AB\ldots A'\ldots B'A$; and about the polygon describe another circle, which will therefore have the same centre as the great circle of the sphere. Let AA' bisect the polygon and cut the sphere in a, a'.

If the great circle and the circumscribed polygon revolve together about AA', the great circle will describe the surface of a sphere, the angular points of the polygon except A, A' will move round the surface of a larger sphere, the points of contact of the sides of the polygon with the great circle of the inner sphere will describe circles on that sphere in planes perpendicular to AA', and the sides of the polygon themselves will describe portions of conical surfaces. The circumscribed figure will thus be greater than the sphere itself.

Let any side, as BM, touch the inner circle in K, and let K' be the point of contact of the circle with $B'M'$.

Then the circle described by the revolution of KK' about AA' is the boundary in one plane of two surfaces

(1) the surface formed by the revolution of the circular segment KaK', and
(2) the surface formed by the revolution of the part $KB\ldots A\ldots B'K'$ of the polygon.

Now the second surface entirely includes the first, and they are both concave in the same direction;

therefore $[\text{Assumptions}, \, 4]$ the second surface is greater than the first.

The same is true of the portion of the surface on the opposite side of the circle on KK' as diameter.

Hence, adding, we see that the surface of the figure circumscribed to the given sphere is greater than that of the sphere itself.

Proposition 29.

In a figure circumscribed to a sphere in the manner shown in the previous proposition the surface is equal to a circle the square on whose radius is equal to $AB(BB' + CC' + \ldots)$.

For the figure circumscribed to the sphere is inscribed in a larger sphere, and the proof of Prop. 24 applies.

Proposition 30.

The surface of a figure circumscribed as before about a sphere is greater than four times the great circle of the sphere.
Let $AB...A'...B'A$ be the regular polygon of $4n$ sides which by its revolution about AA' describes the figure circumscribing the sphere of which $ama'm'$ is a great circle. Suppose aa', AA' to be in one straight line.

Let R be a circle equal to the surface of the circumscribed solid.

Now $(BB' + CC' + ...): AA' = A'B : BA$, [as in Prop. 21]
so that $AB (BB' + CC' + ...) = AA' . A'B$.

Hence $(\text{radius of } R) = \sqrt{AA' . A'B}$ [Prop. 29]
$> A'B$.

But $A'B = 2OP$, where P is the point in which AB touches the circle $ama'm'$.

Therefore $(\text{radius of } R) > (\text{diameter of circle } ama'm')$;
whence R, and therefore the surface of the circumscribed solid,
is greater than four times the great circle of the given sphere.

Proposition 31.

The solid of revolution circumscribed as before about a sphere is equal to a cone whose base is equal to the surface of the solid and whose height is equal to the radius of the sphere.

The solid is, as before, a solid inscribed in a larger sphere; and, since the perpendicular on any side of the revolving polygon is equal to the radius of the inner sphere, the proposition is identical with Prop. 26.

Cor. The solid circumscribed about the smaller sphere is greater than four times the cone whose base is a great circle of the sphere and whose height is equal to the radius of the sphere.

For, since the surface of the solid is greater than four times the great circle of the inner sphere [Prop. 30], the cone whose base is equal to the surface of the solid and whose height is the radius of the sphere is greater than four times the cone of the same height which has the great circle for base. [Lemma 1.]

Hence, by the proposition, the volume of the solid is greater than four times the latter cone.
Proposition 32.

If a regular polygon with \(4n\) sides be inscribed in a great circle of a sphere, as \(ab\ldots a'\ldots b'a\), and a similar polygon \(AB\ldots A'\ldots B'A\) be described about the great circle, and if the polygons revolve with the great circle about the diameters \(aa', AA'\) respectively, so that they describe the surfaces of solid figures inscribed in and circumscribed to the sphere respectively, then

(1) the surfaces of the circumscribed and inscribed figures are to one another in the duplicate ratio of their sides, and

(2) the figures themselves [i.e. their volumes] are in the triplicate ratio of their sides.

(1) Let \(AA', aa'\) be in the same straight line, and let \(MmOm'M'\) be a diameter at right angles to them.

Join \(BB', CC',\ldots\) and \(bb', cc',\ldots\) which will all be parallel to one another and \(MM'\).

Suppose \(R, S\) to be circles such that

\[R = \text{(surface of circumscribed solid)}, \]
\[S = \text{(surface of inscribed solid)}. \]
Then \((\text{radius of } R)^2 = AB (BB' + CC' + ...)\) \([\text{Prop. 29}]\)
\((\text{radius of } S)^2 = ab (bb' + cc' + ...).\) \([\text{Prop. 24}]\)

And, since the polygons are similar, the rectangles in these two equations are similar, and are therefore in the ratio of \(AB^2 : ab^2.\)

Hence

\((\text{surface of circumscribed solid}) : (\text{surface of inscribed solid}) = AB^2 : ab^2.\)

(2) Take a cone \(V\) whose base is the circle \(R\) and whose height is equal to \(Oa\), and a cone \(W\) whose base is the circle \(S\) and whose height is equal to the perpendicular from \(O\) on \(ab\), which we will call \(p\).

Then \(V, W\) are respectively equal to the volumes of the circumscribed and inscribed figures. \([\text{Props. 31, 26}]\)

Now, since the polygons are similar,

\(AB : ab = Oa : p\)

\(= (\text{height of cone } V) : (\text{height of cone } W);\)

and, as shown above, the bases of the cones (the circles \(R, S\)) are in the ratio of \(AB^2\) to \(ab^2.\)

Therefore \(V : W = AB^2 : ab^2.\)

Proposition 33.

The surface of any sphere is equal to four times the greatest circle in it.

Let \(C\) be a circle equal to four times the great circle.

Then, if \(C\) is not equal to the surface of the sphere, it must either be less or greater.

I. Suppose \(C\) less than the surface of the sphere.

It is then possible to find two lines \(\beta, \gamma,\) of which \(\beta\) is the greater, such that

\(\beta : \gamma < (\text{surface of sphere}) : C.\) \([\text{Prop. 2}]\)

Take such lines, and let \(\delta\) be a mean proportional between them.
Suppose similar regular polygons with $4n$ sides circumscribed about and inscribed in a great circle such that the ratio of their sides is less than the ratio $\beta : \delta$. \[\text{[Prop. 3]}\]

Let the polygons with the circle revolve together about a diameter common to all, describing solids of revolution as before.

Then (surface of outer solid) : (surface of inner solid)

\[= (\text{side of outer})^2 : (\text{side of inner})^2 \quad \text{[Prop. 32]}\]

\[< \beta^2 : \delta^2, \text{ or } \beta : \gamma\]

\[< (\text{surface of sphere}) : C, \text{ a fortiori}.\]

But this is impossible, since the surface of the circumscribed solid is greater than that of the sphere [Prop. 28], while the surface of the inscribed solid is less than C [Prop. 25].

Therefore C is not less than the surface of the sphere.

II. Suppose C greater than the surface of the sphere.

Take lines β, γ, of which β is the greater, such that

\[\beta : \gamma < C : (\text{surface of sphere}).\]

Circumscribe and inscribe to the great circle similar regular polygons, as before, such that their sides are in a ratio less than that of β to δ, and suppose solids of revolution generated in the usual manner.
Then, in this case,

(surface of circumscribed solid) : (surface of inscribed solid)

< \(C\) : (surface of sphere).

But this is impossible, because the surface of the circumscribed solid is greater than \(C\) [Prop. 30], while the surface of the inscribed solid is less than that of the sphere [Prop. 23].

Thus \(C\) is not greater than the surface of the sphere.

Therefore, since it is neither greater nor less, \(C\) is equal to the surface of the sphere.

Proposition 34.

Any sphere is equal to four times the cone which has its base equal to the greatest circle in the sphere and its height equal to the radius of the sphere.

Let the sphere be that of which \(am'am'\) is a great circle.

If now the sphere is not equal to four times the cone described, it is either greater or less.

I. If possible, let the sphere be greater than four times the cone.

Suppose \(V\) to be a cone whose base is equal to four times the great circle and whose height is equal to the radius of the sphere.

Then, by hypothesis, the sphere is greater than \(V\); and two lines \(\beta, \gamma\) can be found (of which \(\beta\) is the greater) such that

\[\beta : \gamma < (\text{volume of sphere}) : V. \]

Between \(\beta\) and \(\gamma\) place two arithmetic means \(\delta, \epsilon\).

As before, let similar regular polygons with sides \(4n\) in number be circumscribed about and inscribed in the great circle, such that their sides are in a ratio less than \(\beta : \delta\).

Imagine the diameter \(aa'\) of the circle to be in the same straight line with a diameter of both polygons, and imagine the latter to revolve with the circle about \(aa'\), describing the
surfaces of two solids of revolution. The volumes of these solids are therefore in the triplicate ratio of their sides. [Prop. 32]

Thus (vol. of outer solid) : (vol. of inscribed solid)

\[< \beta^3 : \delta^3, \text{ by hypothesis,} \]

\[< \beta : \gamma, a \text{ fortiori (since } \beta : \gamma > \beta^3 : \delta^3) \]

\[< \text{ (volume of sphere) : } V, a \text{ fortiori.} \]

But this is impossible, since the volume of the circumscribed

* That \(\beta : \gamma > \beta^3 : \delta^3 \) is assumed by Archimedes. Eutocius proves the property in his commentary as follows.

Take \(x \) such that \(\beta : \delta = \delta : x \).

Thus \(\beta - \delta : \beta = \delta - x : \delta \)

and, since \(\beta > \delta \), \(\beta - \delta > \delta - x \).

But, by hypothesis, \(\beta - \delta = \delta - \epsilon \).

Therefore \(\delta - \epsilon > \delta - x \),

or \(x > \epsilon \).

Again, suppose \(\delta : x = x : y \),

and, as before, we have \(\delta - x > x - y \),

so that, \(a \text{ fortiori,} \)

\(\delta - \epsilon > x - y \).

Therefore \(\epsilon - \gamma > x - y \);

and, since \(x > \epsilon \), \(y > \gamma \).

Now, by hypothesis, \(\beta, \delta, x, y \) are in continued proportion;

therefore \(\beta^3 : \delta^3 = \beta : y \)

\[< \beta : \gamma. \]
solid is greater than that of the sphere [Prop. 28], while the volume of the inscribed solid is less than \(V \) [Prop. 27].

Hence the sphere is not greater than \(V \), or four times the cone described in the enunciation.

II. If possible, let the sphere be less than \(V \).

In this case we take \(\beta, \gamma \) (\(\beta \) being the greater) such that

\[\beta : \gamma < V : (\text{volume of sphere}). \]

The rest of the construction and proof proceeding as before, we have finally

\[(\text{volume of outer solid}) : (\text{volume of inscribed solid}) \]

\[< V : (\text{volume of sphere}). \]

But this is impossible, because the volume of the outer solid is greater than \(V \) [Prop. 31, Cor.], and the volume of the inscribed solid is less than the volume of the sphere.

Hence the sphere is not less than \(V \).

Since then the sphere is neither less nor greater than \(V \), it is equal to \(V \), or to four times the cone described in the enunciation.

COR. From what has been proved it follows that every cylinder whose base is the greatest circle in a sphere and whose height is equal to the diameter of the sphere is \(\frac{4}{3} \) of the sphere, and its surface together with its bases is \(\frac{4}{3} \) of the surface of the sphere.

For the cylinder is three times the cone with the same base and height [Eucl. XII, 10], i.e. six times the cone with the same base and with height equal to the radius of the sphere.

But the sphere is four times the latter cone [Prop. 34]. Therefore the cylinder is \(\frac{4}{3} \) of the sphere.

Again, the surface of a cylinder (excluding the bases) is equal to a circle whose radius is a mean proportional between the height of the cylinder and the diameter of its base [Prop. 13].
In this case the height is equal to the diameter of the base and therefore the circle is that whose radius is the diameter of the sphere, or a circle equal to four times the great circle of the sphere.

Therefore the surface of the cylinder with the bases is equal to six times the great circle.

And the surface of the sphere is four times the great circle [Prop. 33]; whence

(surface of cylinder with bases) = \(\frac{3}{2} \) (surface of sphere).

Proposition 35.

*If in a segment of a circle \(LAL' \) (where \(A \) is the middle point of the arc) a polygon \(LK...A...K'L' \) be inscribed of which \(LL' \) is one side, while the other sides are \(2n \) in number and all equal, and if the polygon revolve with the segment about the diameter \(AM \), generating a solid figure inscribed in a segment of a sphere, then the surface of the inscribed solid is equal to a circle the square on whose radius is equal to the rectangle

\[
AB \left(BB' + CC' + ... + KK' + \frac{LL'}{2} \right).
\]

The surface of the inscribed figure is made up of portions of surfaces of cones.
If we take these successively, the surface of the cone BAB'
is equal to a circle whose radius is
\[\sqrt{AB \cdot \frac{1}{2} BB'}. \] [Prop. 14]
The surface of the frustum of a cone $BCC'B'$ is equal to
a circle whose radius is
\[\sqrt{AB \cdot \frac{BB' + CC'}{2}}; \] [Prop. 16]
and so on.

Proceeding in this way and adding, we find, since circles
are to one another as the squares of their radii, that the
surface of the inscribed figure is equal to a circle whose radius
is
\[\sqrt{AB \left(BB' + CC' + \ldots + KK' + \frac{LL'}{2} \right)}. \]

Proposition 36.

The surface of the figure inscribed as before in the segment
of a sphere is less than that of the segment of the sphere.

This is clear, because the circular base of the segment is a
common boundary of each of two surfaces, of which one, the
segment, includes the other, the solid, while both are concave
in the same direction [Assumptions, 4].

Proposition 37.

The surface of the solid figure inscribed in the segment of the
sphere by the revolution of $LK \ldots A \ldots K'L'$ about AM is less than
a circle with radius equal to AL.

Let the diameter AM meet the circle of which LAL' is a
segment again in A'. Join $A'B$.

As in Prop. 35, the surface of the inscribed solid is equal to
a circle the square on whose radius is
\[AB \left(BB' + CC' + \ldots + KK' + LM \right). \]
But this rectangle \(= A'B \cdot AM \) \hspace{1cm} \text{[Prop. 22]}
\begin{align*}
< A'A \cdot AM \\
< AL'
\end{align*}

Hence the surface of the inscribed solid is less than the circle whose radius is \(AL \).

Proposition 38.

The solid figure described as before in a segment of a sphere less than a hemisphere, together with the cone whose base is the base of the segment and whose apex is the centre of the sphere, is equal to a cone whose base is equal to the surface of the inscribed solid and whose height is equal to the perpendicular from the centre of the sphere on any side of the polygon.

Let \(O \) be the centre of the sphere, and \(p \) the length of the perpendicular from \(O \) on \(AB \).

Suppose cones described with \(O \) as apex, and with the circles on \(BB', CC', \ldots \) as diameters as bases.

Then the rhombus \(OBAB' \) is equal to a cone whose base is equal to the surface of the cone \(BAB' \), and whose height is \(p \). \hspace{1cm} \text{[Prop. 18]}

Again, if \(CB, C'B' \) meet in \(T \), the solid described by the triangle \(BOC \) as the polygon revolves about \(AO \) is the difference
between the rhombi $OCTC'$ and $OBTB'$, and is therefore equal to a cone whose base is equal to the surface of the frustum $BCC'B'$ and whose height is p. \cite{Prop. 20}

Similarly for the part of the solid described by the triangle COD as the polygon revolves; and so on.

Hence, by addition, the solid figure inscribed in the segment together with the cone OLL' is equal to a cone whose base is the surface of the inscribed solid and whose height is p.

Cor. *The cone whose base is a circle with radius equal to AL and whose height is equal to the radius of the sphere is greater than the sum of the inscribed solid and the cone OLL'.*

For, by the proposition, the inscribed solid together with the cone OLL' is equal to a cone with base equal to the surface of the solid and with height p.

This latter cone is less than a cone with height equal to OA and with base equal to the circle whose radius is AL, because the height p is less than OA, while the surface of the solid is less than a circle with radius AL. \cite{Prop. 37}

Proposition 39.

Let lal' be a segment of a great circle of a sphere, being less than a semicircle. Let O be the centre of the sphere, and join $Ol, O'l$. Suppose a polygon circumscribed about the sector $Olal'$ such that its sides, excluding the two radii, are $2n$ in number
and all equal, as $LK, ... BA, AB', ... K'L'$; and let OA be that radius of the great circle which bisects the segment lal'.

The circle circumscribing the polygon will then have the same centre O as the given great circle.

Now suppose the polygon and the two circles to revolve together about OA. The two circles will describe spheres, the angular points except A will describe circles on the outer sphere, with diameters BB' etc., the points of contact of the sides with the inner segment will describe circles on the inner sphere, the sides themselves will describe the surfaces of cones or frusta of cones, and the whole figure circumscribed to the segment of the inner sphere by the revolution of the equal sides of the polygon will have for its base the circle on LL' as diameter.

The surface of the solid figure so circumscribed about the sector of the sphere [excluding its base] will be greater than that of the segment of the sphere whose base is the circle on ll' as diameter.

For draw the tangents $lT, l'T'$ to the inner segment at l, l'. These with the sides of the polygon will describe by their revolution a solid whose surface is greater than that of the segment [Assumptions, 4].

But the surface described by the revolution of lT is less than that described by the revolution of LT, since the angle Tll is a right angle, and therefore $LT > lT$.

Hence, a fortiori, the surface described by $LK...A...K'L'$ is greater than that of the segment.
COR. The surface of the figure so described about the sector of the sphere is equal to a circle the square on whose radius is equal to the rectangle

$$AB \left(BB' + CC' + \ldots + KK' + \frac{1}{2} LL' \right).$$

For the circumscribed figure is inscribed in the outer sphere, and the proof of Prop. 35 therefore applies.

Proposition 40.

The surface of the figure circumscribed to the sector as before is greater than a circle whose radius is equal to al.

Let the diameter AaO meet the great circle and the circle circumscribing the revolving polygon again in a', A'. Join $A'B$, and let ON be drawn to N, the point of contact of AB with the inner circle.

![Diagram showing the geometric setup for the proposition]

Now, by Prop. 39, Cor., the surface of the solid figure circumscribed to the sector $OlAl'$ is equal to a circle the square on whose radius is equal to the rectangle

$$AB \left(BB' + CC' + \ldots + KK' + \frac{1}{2} LL' \right).$$

But this rectangle is equal to $A'B \cdot AM$ [as in Prop. 22].
Next, since AL', al' are parallel, the triangles AML', aml' are similar. And $AL' > al'$; therefore $AM > am$.

Also $A'B = 2ON = aa'$.

Therefore $A'B \cdot AM > am \cdot aa' > al'^n$.

Hence the surface of the solid figure circumscribed to the sector is greater than a circle whose radius is equal to al', or al.

Cor. 1. **The volume of the figure circumscribed about the sector together with the cone whose apex is O and base the circle on LL' as diameter, is equal to the volume of a cone whose base is equal to the surface of the circumscribed figure and whose height is ON**.

For the figure is inscribed in the outer sphere which has the same centre as the inner. Hence the proof of Prop. 38 applies.

Cor. 2. **The volume of the circumscribed figure with the cone OLL' is greater than the cone whose base is a circle with radius equal to al and whose height is equal to the radius (Oa) of the inner sphere**.

For the volume of the figure with the cone OLL' is equal to a cone whose base is equal to the surface of the figure and whose height is equal to ON.

And the surface of the figure is greater than a circle with radius equal to al [Prop. 40], while the heights Oa, ON are equal.

Proposition 41.

Let lal' be a segment of a great circle of a sphere which is less than a semicircle.

Suppose a polygon inscribed in the sector Oal' such that the sides $lk, \ldots ba, \ ab', \ldots k'l'$ are $2n$ in number and all equal. Let a similar polygon be circumscribed about the sector so that its sides are parallel to those of the first polygon; and draw the circle circumscribing the outer polygon.

Now let the polygons and circles revolve together about Oaa, the radius bisecting the segment lal'.
Then (1) the surfaces of the outer and inner solids of revolution so described are in the ratio of AB^a to ab^a, and (2) their volumes together with the corresponding cones with the same base and with apex O in each case are as AB^a to ab^a.

(1) For the surfaces are equal to circles the squares on whose radii are equal respectively to

$$AB \left(BB' + CC' + \ldots + KK' + \frac{LL'}{2} \right),$$

[Prop. 39, Cor.]

and

$$ab \left(bb' + cc' + \ldots + kk' + \frac{ll'}{2} \right).$$

[Prop. 35]

But these rectangles are in the ratio of AB^a to ab^a. Therefore so are the surfaces.

(2) Let OnN be drawn perpendicular to ab and AB; and suppose the circles which are equal to the surfaces of the outer and inner solids of revolution to be denoted by S, s respectively.

Now the volume of the circumscribed solid together with the cone OLL' is equal to a cone whose base is S and whose height is ON [Prop. 40, Cor. 1].

And the volume of the inscribed figure with the cone Oll' is equal to a cone with base s and height On [Prop. 38].

But

$$S : s = AB^a : ab^a,$$

and

$$ON : On = AB : ab.$$

Therefore the volume of the circumscribed solid together with the cone OLL' is to the volume of the inscribed solid together with the cone Oll' as AB^a is to ab^a [Lemma 5].

4—2
Proposition 42.

If \(lal' \) be a segment of a sphere less than a hemisphere and \(Oa \) the radius perpendicular to the base of the segment, the surface of the segment is equal to a circle whose radius is equal to \(al \).

Let \(R \) be a circle whose radius is equal to \(al \). Then the surface of the segment, which we will call \(S \), must, if it be not equal to \(R \), be either greater or less than \(R \).

I. Suppose, if possible, \(S > R \).

Let \(lal' \) be a segment of a great circle which is less than a semicircle. Join \(Ol, Ol' \), and let similar polygons with \(2n \) equal sides be circumscribed and inscribed to the sector, as in the previous propositions, but such that

\[
(\text{circumscribed polygon}) : (\text{inscribed polygon}) < S : R. \quad \text{[Prop. 6]}
\]

Let the polygons now revolve with the segment about \(OaA \), generating solids of revolution circumscribed and inscribed to the segment of the sphere.

Then

\[
(\text{surface of outer solid}) : (\text{surface of inner solid}) = AB^* : ab^* \quad \text{[Prop. 41]}
\]

\[
= (\text{circumscribed polygon}) : (\text{inscribed polygon}) < S : R, \text{ by hypothesis.}
\]

But the surface of the outer solid is greater than \(S \) [Prop. 39].
Therefore the surface of the inner solid is greater than \(R \); which is impossible, by Prop. 37.

II. Suppose, if possible, \(S < R \).

In this case we circumscribe and inscribe polygons such that their ratio is less than \(R : S \); and we arrive at the result that

\[
\frac{\text{surface of outer solid}}{\text{surface of inner solid}} < R : S.
\]

But the surface of the outer solid is greater than \(R \) [Prop. 40]. Therefore the surface of the inner solid is greater than \(S \); which is impossible [Prop. 36].

Hence, since \(S \) is neither greater nor less than \(R \),

\[S = R. \]

Proposition 43.

Even if the segment of the sphere is greater than a hemisphere, its surface is still equal to a circle whose radius is equal to \(a l \).

For let \(ll'la' \) be a great circle of the sphere, \(aa' \) being the diameter perpendicular to \(ll' \); and let \(ll''la'' \) be a segment less than a semi-circle.

Then, by Prop. 42, the surface of the segment \(ll''la'' \) of the sphere is equal to a circle with radius equal to \(a'la' \).

Also the surface of the whole sphere is equal to a circle with radius equal to \(aa' \) [Prop. 33].

But \(aa'^2 - aa'^2 = al^2 \), and circles are to one another as the squares on their radii.

Therefore the surface of the segment \(ll'la' \), being the difference between the surfaces of the sphere and of \(ll''la'' \), is equal to a circle with radius equal to \(aal \).
Proposition 44.

The volume of any sector of a sphere is equal to a cone whose base is equal to the surface of the segment of the sphere included in the sector, and whose height is equal to the radius of the sphere.

Let \(R \) be a cone whose base is equal to the surface of the segment \(lal' \) of a sphere and whose height is equal to the radius of the sphere; and let \(S \) be the volume of the sector \(Olal' \).

Then, if \(S \) is not equal to \(R \), it must be either greater or less.

I. Suppose, if possible, that \(S > R \).

Find two straight lines \(\beta, \gamma \), of which \(\beta \) is the greater, such that

\[\beta : \gamma < S : R; \]

and let \(\delta, \epsilon \) be two arithmetic means between \(\beta, \gamma \).

Let \(lal' \) be a segment of a great circle of the sphere. Join \(Ol, Ol' \), and let similar polygons with \(2n \) equal sides be circumscribed and inscribed to the sector of the circle as before, but such that their sides are in a ratio less than \(\beta : \delta \). [Prop. 4].
Then let the two polygons revolve with the segment about OaA, generating two solids of revolution.

Denoting the volumes of these solids by V, v respectively, we have

$$(V + \text{cone } OLL') : (v + \text{cone } Oll') = AB^s : ab^s$$ \[\text{[Prop. 41]}\]

$$< \beta^s : \delta^s$$

$$< \beta : \gamma, \text{ a fortiori}^*,$$

$$< S : R, \text{ by hypothesis.}$$

Now

$$(V + \text{cone } OLL') > S.$$

Therefore also

$$(v + \text{cone } Oll') > R.$$

But this is impossible, by Prop. 38, Cor. combined with Props. 42, 43.

Hence

$$S \not> R.$$

II. Suppose, if possible, that $S < R$.

In this case we take β, γ such that

$$\beta : \gamma < R : S,$$

and the rest of the construction proceeds as before.

We thus obtain the relation

$$(V + \text{cone } OLL') : (v + \text{cone } Oll') < R : S.$$

Now

$$(v + \text{cone } Oll') < S.$$

Therefore

$$(V + \text{cone } OLL') < R;$$

which is impossible, by Prop. 40, Cor. 2 combined with Props. 42, 43.

Since then S is neither greater nor less than $R,$

$$S = R.$$

* Cf. note on Prop. 34, p. 42..
"ARCHIMEDES to Dositheus greeting.

On a former occasion you asked me to write out the proofs of the problems the enunciations of which I had myself sent to Conon. In point of fact they depend for the most part on the theorems of which I have already sent you the demonstrations, namely (1) that the surface of any sphere is four times the greatest circle in the sphere, (2) that the surface of any segment of a sphere is equal to a circle whose radius is equal to the straight line drawn from the vertex of the segment to the circumference of its base, (3) that the cylinder whose base is the greatest circle in any sphere and whose height is equal to the diameter of the sphere is itself in magnitude half as large again as the sphere, while its surface [including the two bases] is half as large again as the surface of the sphere, and (4) that any solid sector is equal to a cone whose base is the circle which is equal to the surface of the segment of the sphere included in the sector, and whose height is equal to the radius of the sphere. Such then of the theorems and problems as depend on these theorems I have written out in the book which I send herewith; those which are discovered by means of a different sort of investigation, those namely which relate to spirals and the conoids, I will endeavour to send you soon."
The first of the problems was as follows: *Given a sphere, to find a plane area equal to the surface of the sphere.*

The solution of this is obvious from the theorems aforesaid. For four times the greatest circle in the sphere is both a plane area and equal to the surface of the sphere.

The second problem was the following."

Proposition 1. (Problem.)

Given a cone or a cylinder, to find a sphere equal to the cone or to the cylinder.

If V be the given cone or cylinder, we can make a cylinder equal to $\frac{4}{3}V$. Let this cylinder be the cylinder whose base is the circle on AB as diameter and whose height is OD.

Now, if we could make another cylinder, equal to the cylinder (OD) but such that its height is equal to the diameter of its base, the problem would be solved, because this latter cylinder would be equal to $\frac{4}{3}V$, and the sphere whose diameter is equal to the height (or to the diameter of the base) of the same cylinder would then be the sphere required [I. 34, Cor.].

Suppose the problem solved, and let the cylinder (CG) be equal to the cylinder (OD), while EF, the diameter of the base, is equal to the height CG.
Then, since in equal cylinders the heights and bases are reciprocally proportional,

\[AB^2 : EF^2 = CG : OD \]

\[= EF : OD \] \hspace{1cm} (1).

Suppose \(MN \) to be such a line that

\[EF^2 = AB \cdot MN \] \hspace{1cm} (2).

Hence \(AB : EF = EF : MN \),

and, combining (1) and (2), we have

\[AB : MN = EF : OD, \]

or

\[AB : EF = MN : OD. \]

Therefore \(AB : EF = EF : MN = MN : OD, \)

and \(EF, MN \) are two mean proportionals between \(AB, OD \).

The synthesis of the problem is therefore as follows. Take two mean proportionals \(EF, MN \) between \(AB \) and \(OD \), and describe a cylinder whose base is a circle on \(EF \) as diameter and whose height \(CG \) is equal to \(EF \).

Then, since

\[AB : EF = EF : MN = MN : OD, \]

\[EF^2 = AB \cdot MN, \]

and therefore \(AB^2 : EF^2 = AB : MN \)

\[= EF : OD \]

\[= CG : OD; \]

whence the bases of the two cylinders \((OD), (CG) \) are reciprocally proportional to their heights.

Therefore the cylinders are equal, and it follows that

cylinder \((CG) = \frac{2}{3} V. \)

The sphere on \(EF \) as diameter is therefore the sphere required, being equal to \(V. \)
Proposition 2.

If \(BAB' \) be a segment of a sphere, \(BB' \) a diameter of the base of the segment, and \(O \) the centre of the sphere, and if \(AA' \) be the diameter of the sphere bisecting \(BB' \) in \(M \), then the volume of the segment is equal to that of a cone whose base is the same as that of the segment and whose height is \(h \), where

\[
h : AM = OA' + A'M : A'M.
\]

Measure \(MH \) along \(MA \) equal to \(h \), and \(MH' \) along \(MA' \) equal to \(h' \), where

\[
h' : A'M = OA + AM : AM.
\]

Suppose the three cones constructed which have \(O, H, H' \) for their apices and the base \((BB')\) of the segment for their common base. Join \(AB, A'B \).

Let \(C \) be a cone whose base is equal to the surface of the segment \(BAB' \) of the sphere, i.e. to a circle with radius equal to \(AB \) [I. 42], and whose height is equal to \(OA \).

Then the cone \(C \) is equal to the solid sector \(OBAB' \) [I. 44].

Now, since \(HM : MA = OA' + A'M : A'M \),

\[\text{dividendo, } \quad HA : AM = OA : A'M,\]

and, alternately, \(HA : AO = AM : MA' \),

so that

\[
HO : OA = AA' : A'M
\]

\[
= AB^* : BM^*
\]

\[
= (\text{base of cone } C) : \text{(circle on } BB' \text{ as diameter}).
\]
But \(OA \) is equal to the height of the cone \(C \); therefore, since cones are equal if their bases and heights are reciprocally proportional, it follows that the cone \(C \) (or the solid sector \(OBA'BA' \)) is equal to a cone whose base is the circle on \(BB' \) as diameter and whose height is equal to \(OH \).

And this latter cone is equal to the sum of two others having the same base and with heights \(OM, MH \), i.e. to the solid rhombus \(OBHB' \).

Hence the sector \(OBA'BA' \) is equal to the rhombus \(OBHB' \).

Taking away the common part, the cone \(OBB' \),

the segment \(BAB' = \) the cone \(HBB' \).

Similarly, by the same method, we can prove that

the segment \(BA'B' = \) the cone \(H'B'B' \).

Alternative proof of the latter property.

Suppose \(D \) to be a cone whose base is equal to the surface of the whole sphere and whose height is equal to \(OA \).

Thus \(D \) is equal to the volume of the sphere. \[I. 33, 34 \]

Now, since \(OA' + A'M : A'M = HM : MA \),

dividendo and alternando, as before,

\[OA : AH = A'M : MA. \]

Again, since

\[H'M : MA' = OA + AM : AM, \]

\[H'A' : OA = A'M : MA \]

\[= OA : AH, \text{ from above.} \]

Componendo,

\[H'O : OA = OH : HA (1). \]

Alternately,

\[H'O : OH = OA : AH (2), \]

and, *componendo,*

\[HH' : HO = OH : HA, \]

\[= H'O : OA, \text{ from (1),} \]

whence

\[HH' \cdot OA = H'O \cdot OH (3). \]

Next, since

\[H'O : OH = OA : AH, \text{ by (2),} \]

\[= A'M : MA, \]

\[(H'O + OH)* : H'O \cdot OH = (A'M + MA)* : A'M \cdot MA, \]
whence, by means of (3),

\[HH^2 : HH' \cdot OA = AA'^2 : A'M \cdot MA, \]

or

\[HH' : OA = AA'^2 : BM'. \]

Now the cone \(D \), which is equal to the sphere, has for its base a circle whose radius is equal to \(AA' \), and for its height a line equal to \(OA \).

Hence this cone \(D \) is equal to a cone whose base is the circle on \(BB' \) as diameter and whose height is equal to \(HH' \); therefore the cone \(D = \) the rhombus \(HBH'B' \);

or the rhombus \(HBH'B' = \) the sphere.

But the segment \(BAB' = \) the cone \(HBB' \);

therefore the remaining segment \(BA'B' = \) the cone \(H'BB' \).

Cor. The segment \(BAB' \) is to a cone with the same base and equal height in the ratio of \(OA' + A'M \) to \(A'M \).

Proposition 3. (Problem.)

To cut a given sphere by a plane so that the surfaces of the segments may have to one another a given ratio.

Suppose the problem solved. Let \(AA' \) be a diameter of a great circle of the sphere, and suppose that a plane perpendicular to \(AA' \) cuts the plane of the great circle in the straight line \(BB' \), and \(AA' \) in \(M \), and that it divides the sphere so that the surface of the segment \(BAB' \) has to the surface of the segment \(BA'B' \) the given ratio.
Now these surfaces are respectively equal to circles with radii equal to $AB, A'B'$ [I. 42, 43].

Hence the ratio $AB^n : A'B'^n$ is equal to the given ratio, i.e. AM is to MA' in the given ratio.

Accordingly the synthesis proceeds as follows.

If $H : K$ be the given ratio, divide AA' in M so that

$$AM : MA' = H : K.$$

Then $AM : MA' = AB^n : A'B'^n$

$$= (\text{circle with radius } AB) : (\text{circle with radius } A'B')$$

$$= (\text{surface of segment } BAB') : (\text{surface of segment } BA'B').$$

Thus the ratio of the surfaces of the segments is equal to the ratio $H : K$.

Proposition 4. (Problem.)

To cut a given sphere by a plane so that the volumes of the segments are to one another in a given ratio.

Suppose the problem solved, and let the required plane cut the great circle ABA' at right angles in the line BB'. Let AA' be that diameter of the great circle which bisects BB' at right angles (in M), and let O be the centre of the sphere.

Take H on OA produced, and H' on OA' produced, such that

$$OA' + A'M : A'M = HM : MA, \text{..............(1),}$$

and

$$OA + AM : AM = H'M : MA' \text{...........(2).}$$

Join $BH, B'H, BH', B'H'$.
ON THE SPHERE AND CYLINDER II.

Then the cones $HBB', H'BB'$ are respectively equal to the segments $BAB', BA'B'$ of the sphere [Prop. 2].

Hence the ratio of the cones, and therefore of their altitudes, is given, i.e.

$$HM : H'M = \text{the given ratio}\ldots\ldots\ldots\ldots(3).$$

We have now three equations (1), (2), (3), in which there appear three as yet undetermined points M, H, H'; and it is first necessary to find, by means of them, another equation in which only one of these points (M) appears, i.e. we have, so to speak, to eliminate H, H'.

Now, from (3), it is clear that $HH' : H'M$ is also a given ratio; and Archimedes' method of elimination is, first, to find values for each of the ratios $A'H' : H'M$ and $HH' : H'A'$ which are alike independent of H, H', and then, secondly, to equate the ratio compounded of these two ratios to the known value of the ratio $HH' : H'M$.

(a) To find such a value for $A'H' : H'M$.

It is at once clear from equation (2) above that

$$A'H' : H'M = OA : OA + AM \ldots\ldots\ldots\ldots(4).$$

(b) To find such a value for $HH' : A'H'$.

From (1) we derive

$$A'M : MA = OA' + A'M : HM$$
$$= OA' : AH \ldots\ldots\ldots\ldots(5);$$

and, from (2),

$$A'M : MA = H'M : OA + AM$$
$$= A'H' : OA \ldots\ldots\ldots\ldots(6).$$

Thus

$$HA : AO = OA' : A'H',$$

whence

$$OH : OA' = OH' : A'H',$$

or

$$OH : OH' = OA' : A'H'.$$

It follows that

$$HH' : OH' = OH' : A'H',$$

or

$$HH'.H'A' = OH^a.$$

Therefore

$$HH' : H'A' = OH^a : H'A^a$$
$$= AA^a : A'M^a,$$ by means of (6)
(c) To express the ratios \(A'H' : H'M \) and \(HH' : H'M \) more simply we make the following construction. Produce \(OA \) to \(D \) so that \(OA = AD \). (\(D \) will lie beyond \(H \), for \(A'M > MA \), and therefore, by (5), \(OA > AH \).

Then \[\frac{A'H'}{H'M} = \frac{OA}{OA + AM} \]
\[= \frac{AD}{DM} \] \(..................(7) \).

Now divide \(AD \) at \(E \) so that
\[\frac{HH'}{H'M} = \frac{AD}{DE} \] \(..................(8) \).

Thus, using equations (8), (7) and the value of \(HH' : H'A' \) above found, we have
\[\frac{AD}{DE} = \frac{HH'}{H'M} \]
\[= (H'H : H'A').(A'H : H'M) \]
\[= (AA' : A'M').(AD : DM). \]

But \[\frac{AD}{DE} = (DM : DE). (AD : DM). \]

Therefore \[\frac{MD}{DE} = AA' : A'M' \] \(..................(9) \).

And \(D \) is given, since \(AD = OA \). Also \(AD : DE \) (being equal to \(HH' : H'M \)) is a given ratio. Therefore \(DE \) is given.

Hence the problem reduces itself to the problem of dividing \(A'D \) into two parts at \(M \) so that
\[MD : (a \text{ given length}) = (a \text{ given area}) : A'M'. \]

Archimedes adds: "If the problem is propounded in this general form, it requires a \(\delta\iota\omicron\rho\iota\omicron\sigma\mu\circ' \) [i.e. it is necessary to investigate the limits of possibility], but, if there be added the conditions subsisting in the present case, it does not require a \(\delta\iota\omicron\rho\iota\omicron\sigma\mu\circ' \).

In the present case the problem is:

Given a straight line \(A'A \) produced to \(D \) so that \(A'A = 2AD \), and given a point \(E \) on \(AD \), to cut \(AA' \) in a point \(M \) so that
\[\frac{AA''}{A'M'} = \frac{MD}{DE}. \]

"And the analysis and synthesis of both problems will be given at the end\(^*\)."

The synthesis of the main problem will be as follows. Let \(R : S \) be the given ratio, \(R \) being less than \(S \). \(AA' \) being a

* See the note following this proposition.
diameter of a great circle, and O the centre, produce OA to D so that \(OA = AD\), and divide \(AD\) in \(E\) so that
\[AE : ED = R : S.\]

Then cut \(AA'\) in \(M\) so that
\[MD : DE = AA'^2 : A'M'.\]

Through \(M\) erect a plane perpendicular to \(AA'\); this plane will then divide the sphere into segments which will be to one another as \(R\) to \(S\).

Take \(H\) on \(AA'\) produced, and \(H'\) on \(AA'\) produced, so that
\[OA' + A'M : A'M = HM : MA, \ldots \ldots \ldots (1),\]
\[OA + AM : AM = H'M : MA', \ldots \ldots \ldots (2).\]

We have then to show that
\[HM : MH' = R : S, \text{ or } AE : ED.\]

(a) We first find the value of \(HH' : H'A'\) as follows.

As was shown in the analysis (b),
\[HH'.H'A' = OH'^2,\]
or
\[HH' : H'A' = OH'^2 : H'A'^2 = AA'^2 : A'M'^2 = MD : DE, \text{ by construction.}\]

(b) Next we have
\[H'A' : H'M = OA : OA + AM = AD : DM.\]

Therefore

whence
\[HM : MH' = AE : ED = R : S. \quad \text{Q. E. D.}\]

\textbf{Note.} The solution of the subsidiary problem to which the original problem of Prop. 4 is reduced, and of which Archimedes promises a discussion, is given in a highly interesting and important note by Eutocius, who introduces the subject with the following explanation.
“He [Archimedes] promised to give a solution of this problem at the end, but we do not find the promise kept in any of the copies. Hence we find that Dionysodorus too failed to light upon the promised discussion and, being unable to grapple with the omitted lemma, approached the original problem in a different way, which I shall describe later. Diocles also expressed in his work περὶ πυρίων the opinion that Archimedes made the promise but did not perform it, and tried to supply the omission himself. His attempt I shall also give in its order. It will however be seen to have no relation to the omitted discussion but to give, like Dionysodorus, a construction arrived at by a different method of proof. On the other hand, as the result of unremitting and extensive research, I found in a certain old book some theorems discussed which, although the reverse of clear owing to errors and in many ways faulty as regards the figures, nevertheless gave the substance of what I sought, and moreover to some extent kept to the Doric dialect affected by Archimedes, while they retained the names familiar in old usage, the parabola being called a section of a right-angled cone, and the hyperbola a section of an obtuse-angled cone; whence I was led to consider whether these theorems might not in fact be what he promised he would give at the end. For this reason I paid them the closer attention, and, after finding great difficulty with the actual text owing to the multitude of the mistakes above referred to, I made out the sense gradually and now proceed to set it out, as well as I can, in more familiar and clearer language. And first the theorem will be treated generally, in order that what Archimedes says about the limits of possibility may be made clear; after which there will follow the special application to the conditions stated in his analysis of the problem.”

The investigation which follows may be thus reproduced. The general problem is:

Given two straight lines AB, AC and an area D, to divide AB at M so that

$$AM : AC = D : MB^2.$$
Analysis.

Suppose M found, and suppose AC placed at right angles to AB. Join CM and produce it. Draw EBN through B parallel to AC meeting CM in N, and through C draw CHE parallel to AB meeting EBN in E. Complete the parallelogram $CENF$, and through M draw PMH parallel to AC meeting FN in P.

Measure EL along EN so that

\[CE \cdot EL \text{ (or } AB \cdot EL) = D. \]

Then, by hypothesis,

\[AM : AC = CE \cdot EL : MB^2. \]

And

\[AM : AC = CE : EN, \]

by similar triangles,

\[= CE \cdot EL : EL \cdot EN. \]

It follows that \[PN^2 = MB^2 = EL \cdot EN. \]

Hence, if a parabola be described with vertex E, axis EN, and parameter equal to EL, it will pass through P; and it will be given in position, since EL is given.

Therefore P lies on a given parabola.

Next, since the rectangles FH, AE are equal,\n
\[FP \cdot PH = AB \cdot BE. \]

Hence, if a rectangular hyperbola be described with CE, CF as asymptotes and passing through B, it will pass through P. And the hyperbola is given in position.

Therefore P lies on a given hyperbola.

Thus P is determined as the intersection of the parabola and hyperbola. And since P is thus given, M is also given.

Στοπροσμός.

Now, since

\[AM : AC = D : MB^2; \]

\[AM \cdot MB^2 = AC \cdot D. \]

But $AC \cdot D$ is given, and it will be proved later that the maximum value of $AM \cdot MB^2$ is that which it assumes when $BM = 2AM$.

5—2
Hence it is a necessary condition of the possibility of a solution that $AC \cdot D$ must not be greater than $\frac{1}{3} AB \cdot \left(\frac{2}{3} AB\right)^2$, or $\frac{4}{9} AB^2$.

Synthesis.

If O be such a point on AB that $BO = 2AO$, we have seen that, in order that the solution may be possible,

$$AC \cdot D \geq AO \cdot OB^2.$$

Thus $AC \cdot D$ is either equal to, or less than, $AO \cdot OB^2$.

1. If $AC \cdot D = AO \cdot OB^2$, then the point O itself solves the problem.

2. Let $AC \cdot D$ be less than $AO \cdot OB^2$.

Place AC at right angles to AB. Join CO, and produce it to R. Draw EBR through B parallel to AC meeting CO in R, and through C draw CE parallel to AB meeting EBR in E. Complete the parallelogram $CERF$, and through O draw QOK parallel to AC meeting FR in Q and CE in K.

Then, since $AC \cdot D < AO \cdot OB^2$, measure RQ' along RQ so that $AC \cdot D = AO \cdot Q'R^2$, or $AO : AC = D : Q'R^2$.

Measure EL along ER so that $D = CE \cdot EL$ (or $AB \cdot EL$).

Now, since $AO : AC = D : Q'R^2$, by hypothesis,

$$= CE \cdot EL : Q'R^2,$$

and $AO : AC = CE : ER$, by similar triangles,

$$= CE \cdot EL : EL \cdot ER,$$

it follows that $Q'R^2 = EL \cdot ER$.
Describe a parabola with vertex E, axis ER, and parameter equal to EL. This parabola will then pass through Q'.

Again, \[\text{rect. } FK = \text{rect. } AE, \]
or \[FQ \cdot QK = AB \cdot BE; \]
and, if we describe a rectangular hyperbola with asymptotes CE, CF and passing through B, it will also pass through Q.

Let the parabola and hyperbola intersect at P, and through P draw PMH parallel to AC meeting AB in M and CE in H, and GPN parallel to AB meeting CF in G and ER in N.

Then shall M be the required point of division.

Since \[PG \cdot PH = AB \cdot BE, \]
\[\text{rect. } GM = \text{rect. } ME, \]
and therefore CMN is a straight line.

Thus \[AB \cdot BE = PG \cdot PH = AM \cdot EN \quad \text{(1)} \]
Again, by the property of the parabola,
\[PN^2 = EL \cdot EN, \]
or \[MB^2 = EL \cdot EN \quad \text{(2)}. \]

From (1) and (2)
\[AM : EL = AB \cdot BE : MB^2, \]
or \[AM \cdot AB : AB \cdot EL = AB \cdot AC : MB^2. \]
Alternately,
\[AM \cdot AB : AB \cdot AC = AB \cdot EL : MB^2, \]
or \[AM : AC = D : MB^2. \]

Proof of διορισμένος.

It remains to be proved that, if AB be divided at O so that $BO = 2AO$, then $AO \cdot OB^2$ is the maximum value of $AM \cdot MB^2$,
or \[AO \cdot OB^2 > AM \cdot MB^2, \]
where M is any point on AB other than O.
Suppose that \(AO : AC = CE \cdot EL' : OB^2 \), so that \(AO \cdot OB^2 = CE \cdot EL' \cdot AC \).

Join \(CO \), and produce it to \(N \); draw \(EBN \) through \(B \) parallel to \(AC \), and complete the parallelogram \(CENF \).

Through \(O \) draw \(POH \) parallel to \(AC \) meeting \(FN \) in \(P \) and \(CE \) in \(H \).

With vertex \(E \), axis \(EN \), and parameter \(EL' \), describe a parabola. This will pass through \(P \), as shown in the analysis above, and beyond \(P \) will meet the diameter \(CF \) of the parabola in some point.

Next draw a rectangular hyperbola with asymptotes \(CE \), \(CF \) and passing through \(B \). This hyperbola will also pass through \(P \), as shown in the analysis.

Produce \(NE \) to \(T \) so that \(TE = EN \). Join \(TP \) meeting \(CE \) in \(Y \), and produce it to meet \(CF \) in \(W \). Thus \(TP \) will touch the parabola at \(P \).

Then, since \(BO = 2AO \),
\[
TP = 2PW.
\]
And \(TP = 2PY \).
Therefore \(PW = PY \).

Since, then, \(WY \) between the asymptotes is bisected at \(P \), the point where it meets the hyperbola,

\(WY \) is a tangent to the hyperbola.

Hence the hyperbola and parabola, having a common tangent at \(P \), touch one another at \(P \).
ON THE SPHERE AND CYLINDER II.

Now take any point M on AB, and through M draw QMK parallel to AC meeting the hyperbola in Q and CE in K. Lastly, draw $GqQR$ through Q parallel to AB meeting CF in G, the parabola in q, and EN in R.

Then, since, by the property of the hyperbola, the rectangles GK, AE are equal, CMR is a straight line.

By the property of the parabola,

$$qR^2 = EL'.ER,$$

so that

$$QR^2 < EL'.ER.$$

Suppose

$$QR^2 = EL.ER,$$

and we have

$$AM : AC = CE : ER = CE.EL : EL.ER = CE.EL : QR^2 = CE.EL : MB^2,$$

or

$$AM. MB^2 = CE.EL AC.$$

Therefore

$$AM. MB^2 < CE. EL'. AC < AO. OB^2.$$

If $AC. D < AO. OB^2$, there are two solutions because there will be two points of intersection between the parabola and the hyperbola.

For, if we draw with vertex E and axis EN a parabola whose parameter is equal to EL, the parabola will pass through the point Q (see the last figure); and, since the parabola meets the diameter CF beyond Q, it must meet the hyperbola again (which has CF for its asymptote).

[If we put $AB = a$, $BM = x$, $AC = c$, and $D = b^2$, the proportion

$$AM : AC = D : MB^2$$

is seen to be equivalent to the equation

$$x^2(a - x) = b^2c,$$

being a cubic equation with the term containing x omitted.

Now suppose EN, EC to be axes of coordinates, EN being the axis of y.}
Then the parabola used in the above solution is the parabola

\[x^2 = \frac{b^2}{a} y, \]

and the rectangular hyperbola is

\[y(a-x) = ac. \]

Thus the solution of the cubic equation and the conditions under which there are no positive solutions, or one, or two positive solutions are obtained by the use of the two conics.

[For the sake of completeness, and for their intrinsic interest, the solutions of the original problem in Prop. 4 given by Dionysodorus and Diocles are here appended.

Dionysodorus’ solution.

Let \(AA' \) be a diameter of the given sphere. It is required to find a plane cutting \(AA' \) at right angles (in a point \(M \), suppose) so that the segments into which the sphere is divided are in a given ratio, as \(CD : DE \).

Produce \(A'A \) to \(F \) so that \(AF = OA \), where \(O \) is the centre of the sphere.

Draw \(AH \) perpendicular to \(AA' \) and of such length that

\[FA : AH = CE : ED, \]
and produce AH to K so that

$$AK^* = FA \cdot AH \ldots (\alpha).$$

With vertex F, axis FA, and parameter equal to AH describe a parabola. This will pass through K, by the equation (\alpha).

Draw $A'K'$ parallel to AK and meeting the parabola in K'; and with $A'F$, $A'K'$ as asymptotes describe a rectangular hyperbola passing through H. This hyperbola will meet the parabola at some point, as P, between K and K'.

Draw PM perpendicular to AA' meeting the great circle in B, B', and from H, P draw HL, PR both parallel to AA' and meeting $A'K'$ in L, R respectively.

Then, by the property of the hyperbola,

$$PR \cdot PM = AH \cdot HL,$$

i.e.

$$PM \cdot MA' = HA \cdot AA',$$

or

$$PM : AH = AA' : A'M,$$

and

$$PM^* : AH^* = AA'^* : A'M^*.$$

Also, by the property of the parabola,

$$PM^* = FM \cdot AH,$$

i.e.

$$FM : PM = PM : AH,$$

or

$$FM : AH = PM^* : AH^*$$

$$= AA'^* : A'M^*, \text{ from above.}$$

Thus, since circles are to one another as the squares of their radii, the cone whose base is the circle with $A'M$ as radius and whose height is equal to FM, and the cone whose base is the circle with AA' as radius and whose height is equal to AH, have their bases and heights reciprocally proportional.

Hence the cones are equal; i.e., if we denote the first cone by the symbol $c(A'M)$, FM, and so on,

$$c(A'M), FM = c(AA'), AH.$$

Now $c(AA'), FA : c(AA'), AH = FA : AH$

$$= CE : ED, \text{ by construction.}$$
Therefore
\[c(\overline{AA'}), FA : c(\overline{A'M}), FM = CE : ED \ldots \ldots (\beta). \]

But (1) \[c(\overline{AA'}), FA = \text{the sphere.} \quad \text{[I. 34]} \]

(2) \[c(\overline{A'M}), FM \] can be proved equal to the segment of the sphere whose vertex is \(A' \) and height \(A'M \).

For take \(G \) on \(\overline{AA'} \) produced such that
\[GM : MA' = FM : MA \]
\[= OA + AM : AM. \]
Then the cone \(GBB' \) is equal to the segment \(A'BB' \) [Prop. 2].

And
\[FM : MG = AM : MA', \text{ by hypothesis,} \]
\[= BM^2 : A'M^2. \]

Therefore
\[\text{(circle with rad. } BM) : \text{(circle with rad. } A'M) \]
\[= FM : MG, \]
so that
\[c(\overline{A'M}), FM = c(\overline{BM}), MG \]
\[= \text{the segment } A'BB'. \]

We have therefore, from the equation (\(\beta \)) above,
\[\text{(the sphere)} : \text{(segmt. } A'BB') = CE : ED, \]
whence \[\text{(segmt. } ABB') : \text{(segmt. } A'BB') = CD : DE. \]

Diocles' solution.

Diocles starts, like Archimedes, from the property, proved in Prop. 2, that, if the plane of section cut a diameter \(\overline{AA'} \) of the sphere at right angles in \(M \), and if \(H, H' \) be taken on \(OA, OA' \) produced respectively so that
\[OA' + A'M : A'M = HM : MA, \]
\[OA + AM : AM = H'M : MA', \]
then the cones \(HBB', H'BB' \) are respectively equal to the segments \(ABB', A'BB' \).
Then, drawing the inference that

\[HA : AM = OA' : A'M, \]
\[H'A' : A'M = OA : AM, \]

he proceeds to state the problem in the following form, slightly generalising it by the substitution of any given straight line for \(OA \) or \(OA' \):

Given a straight line \(AA' \), its extremities \(A, A' \), a ratio \(C : D \), and another straight line as \(AK \), to divide \(AA' \) at \(M \) and to find two points \(H, H' \) on \(AA' \) and \(A'A' \) produced respectively so that the following relations may hold simultaneously,

\[C : D = HM : MH' \] \((\alpha)\),
\[HA : AM = AK : A'M \] \((\beta)\),
\[H'A' : A'M = AK : AM \] \((\gamma)\).

Analysis.

Suppose the problem solved and the points \(M, H, H' \) all found.

Place \(AK \) at right angles to \(AA' \), and draw \(A'K' \) parallel and equal to \(AK \). Join \(KM, K'M \), and produce them to meet \(K'A', KA \) respectively in \(E, F \). Join \(KK' \), draw \(EG \) through \(E \) parallel to \(A'A \) meeting \(KF \) in \(G \), and through \(M \) draw \(QMN \) parallel to \(AK \) meeting \(EG \) in \(Q \) and \(KK' \) in \(N \).

Now \[HA : AM = A'K' : A'M, \] by \((\beta)\),

\[= FA : AM, \] by similar triangles,

whence \[HA = FA. \]

Similarly \[H'A' = A'E. \]

Next,

\[FA + AM : A'K' + A'M = AM : A'M \]
\[= AK + AM : EA' + A'M, \] by similar triangles.
Therefore

\[(FA + AM) \cdot (EA' + A'M) = (KA + AM) \cdot (K'A' + A'M)\]

Take \(AR\) along \(AH\) and \(A'R'\) along \(A'H'\) such that

\[AR = A'R' = AK.\]

Then, since \(FA + AM = HM, EA' + A'M = MH'\), we have

\[HM \cdot MH' = RM \cdot MR' \]

(Thus, if \(R\) falls between \(A\) and \(H\), \(R'\) falls on the side of \(H'\) remote from \(A'\), and vice versa.)

Now

\[C : D = HM : MH', \text{ by hypothesis,}\]

\[= HM \cdot MH' : MH'^n\]

\[= RM \cdot MR' : MH'^n, \text{ by } (\delta).\]

Measure \(MV\) along \(MN\) so that \(MV = A'M\). Join \(A'V\) and produce it both ways. Draw \(RP, R'P'\) perpendicular to \(RR'\) meeting \(A'V\) produced in \(P, P'\) respectively. Then, the angle \(MA'V\) being half a right angle, \(PP'\) is given in position, and, since \(R, R'\) are given, so are \(P, P'\).

And, by parallels,

\[P'V : PV = R'M : MR.\]
Therefore $PV \cdot P'V : PV^2 = RM \cdot MR' : RM^2$.

But $PV^2 = 2RM^2$.

Therefore $PV \cdot P'V = 2RM \cdot MR'$.

And it was shown that

$RM \cdot MR' : MH'^n = C : D$.

Hence $PV \cdot P'V : MH'^n = 2C : D$.

But $MH' = A'M + A'E = VM + MQ = QV$.

Therefore $QV^n : PV \cdot P'V = D : 2C$, a given ratio.

Thus, if we take a line p such that

$D : 2C = p : PP'$,

and if we describe an ellipse with PP' as a diameter and p as the corresponding parameter [$= DD'/PP'$ in the ordinary notation of geometrical conics], and such that the ordinates to PP' are inclined to it at an angle equal to half a right angle, i.e. are parallel to QV or AK, then the ellipse will pass through Q.

Hence Q lies on an ellipse given in position.

Again, since EK is a diagonal of the parallelogram GK',

$GQ \cdot QN = AA' \cdot A'K'$.

If therefore a rectangular hyperbola be described with KG, KK' as asymptotes and passing through A', it will also pass through Q.

Hence Q lies on a given rectangular hyperbola.

Thus Q is determined as the intersection of a given ellipse

* There is a mistake in the Greek text here which seems to have escaped the notice of all the editors up to the present. The words are ἔν ἀρα ποσόσωμεν, ὃς τῆν Δ ἀροῦ τὴν διάπερα τῆς Γ, ποὺς τῆν ΕΕ πρὸς ἄλλην τινά ὃς τῆν Φ, i.e. (with the lettering above) "If we take a length p such that $D : 2C = PP' : p$." This cannot be right, because we should then have

$QV^n : PV \cdot P'V = PP' : p$,

whereas the two latter terms should be reversed, the correct property of the ellipse being

$QV^n : PV \cdot P'V = p : PP'$.

[Apollonius I. 21]

The mistake would appear to have originated as far back as Eutocius, but I think that Eutocius is more likely to have made the slip than Dioides himself, because any intelligent mathematician would be more likely to make such a slip in writing out another man's work than to overlook it if made by another.
and a given hyperbola, and is therefore given. Thus \(M \) is
given, and \(H, H' \) can at once be found.

Synthesis.

Place \(AA', AK \) at right angles, draw \(A'K' \) parallel and
equal to \(AK \), and join \(KK' \).

Make \(AR \) (measured along \(A'A \) produced) and \(A'R' \)
(measured along \(AA' \) produced) each equal to \(AK \), and
through \(R, R' \) draw perpendiculars to \(RR' \).

Then through \(A' \) draw \(PP' \) making an angle \((AA'P)\) with
\(AA' \) equal to half a right angle and meeting the perpendiculars
just drawn in \(P, P' \) respectively.

Take a length \(p \) such that
\[
D : 2C = p : PP',
\]
and with \(PP' \) as diameter and \(p \) as the corresponding parameter
describe an ellipse such that the ordinates to \(PP' \) are inclined
to it at an angle equal to \(AA'P \), i.e. are parallel to \(AK \).

With asymptotes \(KA, KK' \) draw a rectangular hyperbola
passing through \(A' \).

Let the hyperbola and ellipse meet in \(Q \), and from \(Q \) draw
\(QMVN \) perpendicular to \(AA' \) meeting \(AA' \) in \(M, PP' \) in \(V \)
and \(KK' \) in \(N \). Also draw \(GQE \) parallel to \(AA' \) meeting \(AK, A'K' \) respectively in \(G, E \).

Produce \(KA, K'M \) to meet in \(F \).

Then, from the property of the hyperbola,
\[
GQ \cdot QN = AA' \cdot A'K',
\]
and, since these rectangles are equal, \(KME \) is a straight line.

Measure \(AH \) along \(AR \) equal to \(AF \), and \(A'H' \) along \(A'R' \)
equal to \(A'E \).

From the property of the ellipse,
\[
QV' : PV \cdot P'V = p : PP' = D : 2C.
\]

* Here too the Greek text repeats the same error as that noted on p. 77.
And, by parallels,
\[PV : P'V = RM : R'M, \]
or
\[PV : P'V : P'V = RM : MR' : R'M', \]
while \(P'V^2 = 2R'M', \) since the angle \(RA'P \) is half a right angle.

Therefore
\[PV : P'V = 2RM : MR', \]
whence
\[QV^2 : 2RM : MR' = D : 2C. \]
But
\[QV = EA' + A'M = MH'. \]
Therefore
\[RM : MR' : MH^2 = C : D. \]
Again, by similar triangles,
\[FA + AM : K'A' + A'M = AM : AM = AM : A'M \]
\[= KA + AM : EA' + A'M. \]

Therefore
\[(FA + AM) : (EA' + A'M) = (KA + AM) : (K'A' + A'M) \]
or
\[HM : MH' = RM : MR'. \]

It follows that
\[HM : MH': MH^2 = C : D, \]
or
\[HM : MH' = C : D \quad \ldots \quad (a). \]
Also
\[HA : AM = FA : AM, \]
\[= A'K' : A'M, \]
by similar triangles...(β),
and
\[H'A' : A'M = EA' : A'M \]
\[= AK : AM \quad \ldots \quad (γ). \]

Hence the points \(M, H, H' \) satisfy the three given relations.

Proposition 5. (Problem.)

To construct a segment of a sphere similar to one segment and equal in volume to another.

Let \(ABB' \) be one segment whose vertex is \(A \) and whose base is the circle on \(BB' \) as diameter; and let \(DEF \) be another segment whose vertex is \(D \) and whose base is the circle on \(EF \)
as diameter. Let AA', DD' be diameters of the great circles passing through BB', EF respectively, and let O, C be the respective centres of the spheres.

Suppose it required to draw a segment similar to DEF and equal in volume to ABB'.

Analysis. Suppose the problem solved, and let def be the required segment, d being the vertex and ef the diameter of the base. Let dd' be the diameter of the sphere which bisects ef at right angles, c the centre of the sphere.

Let M, G, g be the points where BB', EF, ef are bisected at right angles by AA', DD', dd' respectively, and produce OA, CD, cd respectively to H, K, k, so that

$$OA' + A'M : A'M = HM : MA$$
$$CD' + D'G : D'G = KG : GD$$
$$cd' + d'g : d'g = kg : gd$$

and suppose cones formed with vertices H, K, k and with the same bases as the respective segments. The cones will then be equal to the segments respectively [Prop. 2].

Therefore, by hypothesis,

the cone $HBB' =$ the cone $kef.$
Hence

\((\text{circle on diameter } BB') : (\text{circle on diameter } ef) = kg : HM\),

so that

\[BB'^2 : ef^2 = kg : HM \]

........................ (1).

But, since the segments \(DEF\), \(def\) are similar, so are the cones \(KEF\), \(kaf\).

Therefore

\[KG : EF = kg : ef. \]

And the ratio \(KG : EF\) is given. Therefore the ratio \(kg : ef\) is given.

Suppose a length \(R\) taken such that

\[kg : ef = HM : R \]

........................ (2).

Thus \(R\) is given.

Again, since \(kg : HM = BB'^2 : ef^2 = ef : R\), by (1) and (2), suppose a length \(S\) taken such that

\[ef^2 = BB' \cdot S, \]

or

\[BB'^2 : ef^2 = BB' : S. \]

Thus

\[BB' : ef = ef : S = S : R, \]

and \(ef, S\) are two mean proportionals in continued proportion between \(BB', R\).

Synthesis. Let \(ABB', DEF\) be great circles, \(AA', DD'\) the diameters bisecting \(BB', EF\) at right angles in \(M, G\) respectively, and \(O, C\) the centres.

Take \(H, K\) in the same way as before, and construct the cones \(HBB', KEF\), which are therefore equal to the respective segments \(ABB', DEF\).

Let \(R\) be a straight line such that

\[KG : EF = HM : R, \]

and between \(BB', R\) take two mean proportionals \(ef, S\).

On \(ef\) as base describe a segment of a circle with vertex \(d\) and similar to the segment of a circle \(DEF\). Complete the circle, and let \(dd'\) be the diameter through \(d\), and \(c\) the centre. Conceive a sphere constructed of which \(def\) is a great circle, and through \(ef\) draw a plane at right angles to \(dd'\).
Then shall def be the required segment of a sphere.

For the segments DEF, def of the spheres are similar, like the circular segments DEF, def.

Produce cd to k so that

$$cd' + d'g : d'g = kg : gd.$$

The cones KEF, kef are then similar.

Therefore

$$kg : ef = KG : EF = HM : R,$$

whence

$$kg : HM = ef : R.$$

But, since BB', ef, S, R are in continued proportion,

$$BB'^2 : ef^2 = BB' : S$$

$$= ef : R$$

$$= kg : HM.$$

Thus the bases of the cones HBB', kef are reciprocally proportional to their heights. The cones are therefore equal, and def is the segment required, being equal in volume to the cone kef.

[Prop. 2]

Proposition 6. (Problem.)

Given two segments of spheres, to find a third segment of a sphere similar to one of the given segments and having its surface equal to that of the other.

Let ABB' be the segment to whose surface the surface of the required segment is to be equal, $ABA'B'$ the great circle whose plane cuts the plane of the base of the segment ABB' at right angles in BB'. Let AA' be the diameter which bisects BB' at right angles.

Let DEF be the segment to which the required segment is to be similar, $DED'F$ the great circle cutting the base of the segment at right angles in EF. Let DD' be the diameter bisecting EF at right angles in G.

Suppose the problem solved, def being a segment similar to DEF and having its surface equal to that of ABB'; and
Divide \(d'd \) at \(g \) so that
\[
d'g : gd = D'G : GD,
\]
and draw through \(g \) a plane perpendicular to \(d'd \) cutting off the segment \(def \) of the sphere and intersecting the plane of the great circle in \(ef \). The segments \(def, DEF \) are thus similar, and
\[
dg : df = DG : DF.
\]

But from above, \textit{componendo},
\[
d'd : dg = D'D : DG.
\]

Therefore, \textit{ex aequali},
\[
d'd : df = D'D : DF,
\]
whence, by (1), \(df = AB \).

Therefore the segment \(def \) has its surface equal to the surface of the segment \(ABB' \) [I. 42, 43], while it is also similar to the segment \(DEF \).

\textbf{Proposition 7. (Problem.)}

\textit{From a given sphere to cut off a segment by a plane so that the segment may have a given ratio to the cone which has the same base as the segment and equal height.}

Let \(AA' \) be the diameter of a great circle of the sphere. It is required to draw a plane at right angles to \(AA' \) cutting off a segment, as \(ABB' \), such that the segment \(ABB' \) has to the cone \(ABB' \) a given ratio.

\textbf{Analysis.}

Suppose the problem solved, and let the plane of section cut the plane of the great circle in \(BB' \), and the diameter \(AA' \) in \(M \). Let \(O \) be the centre of the sphere.

![Diagram](image)

Produce \(OA \) to \(H \) so that
\[
OA' + A'M : A'M = HM : MA..............(1).
\]
Thus the cone HBB' is equal to the segment ABB'. [Prop. 2]

Therefore the given ratio must be equal to the ratio of the cone HBB' to the cone ABB', i.e. to the ratio $HM : MA$.

Hence the ratio $OA' + A'M : A'M$ is given; and therefore $A'M$ is given.

$\delta\iota\rho\iota\sigma\mu\acute{o}$s.

Now $OA' : A'M > OA' : A'A$,

so that $OA' + A'M : A'M > OA' + A'A : A'A$

$> 3 : 2$.

Thus, in order that a solution may be possible, it is a necessary condition that the given ratio must be greater than $3 : 2$.

The synthesis proceeds thus.

Let AA' be a diameter of a great circle of the sphere, O the centre.

Take a line DE, and a point F on it, such that $DE : EF$ is equal to the given ratio, being greater than $3 : 2$.

Now, since $OA' + A'A : A'A = 3 : 2$,

$DE : EF > OA' + A'A : A'A$,

so that $DF : FE > OA' : A'A$.

Hence a point M can be found on AA' such that $DF : FE = OA' : A'M$.(2).

Through M draw a plane at right angles to AA' intersecting the plane of the great circle in BB', and cutting off from the sphere the segment ABB'.

As before, take H on OA produced such that

$OA' + A'M : A'M = HM : MA$.

Therefore $HM : MA = DE : EF$, by means of (2).

It follows that the cone HBB', or the segment ABB', is to the cone ABB' in the given ratio $DE : EF$.
Proposition 8.

If a sphere be cut by a plane not passing through the centre into two segments $A'B'B'$, ABB', of which $A'B'B'$ is the greater, then the ratio

$$(\text{segmt. } A'B'B') : (\text{segmt. } ABB')$$

$$< (\text{surface of } A'B'B')^2 : (\text{surface of } ABB')^2$$

but $$>(\text{surface of } A'B'B')^3 : (\text{surface of } ABB')^3.$$

Let the plane of section cut a great circle $A'BAB'$ at right angles in BB', and let AA' be the diameter bisecting BB' at right angles in M.

Let O be the centre of the sphere.

Join $A'B$, AB.

As usual, take H on OA produced, and H' on OA' produced, so that

$$OA' + A'M : A'M = HM : MA...................(1),$$

$$OA + AM : AM = H'M : MA'.................(2),$$

and conceive cones drawn each with the same base as the two segments and with apices H, H' respectively. The cones are then respectively equal to the segments [Prop. 2], and they are in the ratio of their heights HM, $H'M$.

Also

$$(\text{surface of } A'B'B') : (\text{surface of } ABB') = A'B^2 : AB^2 \quad [I. \, 42, \, 43]$$

$$= A'M : AM.$$

* This is expressed in Archimedes’ phrase by saying that the greater segment has to the lesser a ratio “less than the duplicate ($\delta\nu\lambda\delta\nu\omega$) of that which the surface of the greater segment has to the surface of the lesser, but greater than the sesquialterate ($\eta\mu\delta\lambda\omega$) [of that ratio].”
We have therefore to prove

(a) that \[H'M : MH < A'M^2 : MA^2, \]

(b) that \[H'M : MH > A'M^2 : MA^2. \]

(a) From (2) above,
\[A'M : AM = H'M : OA + AM \]
\[= H'A' : OA', \] since \(OA = OA'. \)

Since \(A'M > AM, H'A' > OA' \); therefore, if we take \(K \) on \(H'A' \) so that \(OA' = A'K, K \) will fall between \(H' \) and \(A' \).

And, by (1), \[A'M : AM = KM : MH. \]
Thus \[KM : MH = H'A' : A'K, \] since \(A'K = OA' \),
\[> H'M : MK. \]

Therefore \[H'M , MH < KM^2. \]

It follows that
\[H'M . MH : MH^2 < KM^2 : MH^2, \]
or
\[H'M : MH < KM^2 : MH^2 \]
\[< A'M^2 : AM^2, \] by (1).

(b) Since \(OA' = OA \),
\[A'M : MA < A'O : OA, \]
or
\[A'M : OA' < OA : AM \]
\[< H'A' : A'M, \] by means of (2).

Therefore \[A'M^2 < H'A' . OA' \]
\[< H'A' . A'K. \]

Take a point \(N \) on \(A'A \) such that
\[A'N^2 = H'A' . A'K. \]

Thus \[H'A' : A'K = A'N^2 : A'K^2 \](3).

Also \[H'A' : A'N = A'N : A'K, \]
and, \textit{componendo},
\[H'N : A'N = NK : A'K, \]
whence \[A'N^2 : A'K^2 = H'N^2 : NK^2. \]
Therefore, by (3),
\[H'A' : A'K = H'N : NK. \]
Now
\[H'M : MK > H'N : NK. \]
Therefore \(H'M : MK > H'A' : A'K \)
\[> H'A' : OA \]
\[> A'M : MA, \text{ by (2), as above,} \]
\[> OA' + A'M : MH, \text{ by (1),} \]
\[> KM : MH. \]
Hence \(H'M : MH = (H'M : MK) : (KM : MH) \)
\[> (KM : MH) : (KM : MH). \]
It follows that \(H'M : MH > KM : MH \)
\[> A'M : AM, \text{ by (1).} \]

[The text of Archimedes adds an alternative proof of this proposition, which is here omitted because it is in fact neither clearer nor shorter than the above.]

Proposition 9.

Of all segments of spheres which have equal surfaces the hemisphere is the greatest in volume.

Let \(ABAB' \) be a great circle of a sphere, \(AA' \) being a diameter, and \(O \) the centre. Let the sphere be cut by a plane, not passing through \(O \), perpendicular to \(AA' \) (at \(M \)), and intersecting the plane of the great circle in \(BB' \). The segment \(ABB' \) may then be either less than a hemisphere as in Fig. 1, or greater than a hemisphere as in Fig. 2.

Let \(DED'E' \) be a great circle of another sphere, \(DD' \) being a diameter and \(C \) the centre. Let the sphere be cut by a plane through \(C \) perpendicular to \(DD' \) and intersecting the plane of the great circle in the diameter \(EE' \).
Suppose the surfaces of the segment $\triangle AB'B'$ and of the hemisphere DEE' to be equal.

Since the surfaces are equal, $AB = DE$. [I. 42, 43]

Now, in Fig. 1, $AB^2 > 2AM^2$ and $< 2AO^2$,

and, in Fig. 2, $AB^2 < 2AM^2$ and $> 2AO^2$.

Hence, if R be taken on AA' such that

$$AR^2 = \frac{1}{2}AB^2,$$

R will fall between O and M.

Also, since $AB^2 = DE^2$, $AR = CD$.

Produce OA' to K so that $OA' = A'K$, and produce $A'A$ to H so that

$$A'K : A'M = HA : AM,$$

or, *componendo*, $A'K + A'M : A'M = HM : MA\ldots\ldots\ldots\ldots\ldots\ldots\ldots(1)$.

Thus the cone HBB' is equal to the segment ABB'.

[Prop. 2]

Again, produce CD to F so that $CD = DF$, and the cone FEE' will be equal to the hemisphere DEE'. [Prop. 2]

Now

$$AR \cdot RA' > AM \cdot MA',$$

and

$$AR^2 = \frac{1}{2}AB^2 = \frac{1}{2}AM \cdot AA' = AM \cdot A'K.$$
Hence
\[AR \cdot RA' + RA'^2 > AM \cdot MA' + AM \cdot A'K, \]
or
\[AA' \cdot AR > AM \cdot MK \]
\[> HM \cdot A'M, \text{ by (1).} \]

Therefore
\[AA' : A'M > HM : AR, \]
or
\[AB^2 : BM^2 > HM : AR, \]
i.e.
\[AR^2 : BM^2 > HM : 2AR, \text{ since } AB^2 = 2AR^2, \]
\[> HM : CF. \]

Thus, since \(AR = CD, \) or \(CE, \)
(circle on diam. \(EE' \)) : (circle on diam. \(BB' \)) > \(HM : CF. \)

It follows that
\[(\text{the cone } FEE') > (\text{the cone } HBB'), \]
and therefore the hemisphere \(DEE' \) is greater in volume than the segment \(ABB'. \)